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UNSTRUCTURED MESH GENERATION AND DYNAMIC LOAD BALANCING

FOR COASTAL OCEAN HYDRODYNAMIC SIMULATION

Abstract

by

Keith J. Roberts

This work examines and improves the e�ciency of numerical modeling of tides,

storm surge and associated flooding on unstructured meshes. Unstructured meshes

composed of triangles are frequently used for numerical simulations of the coastal

ocean because they can resolve the large gap in horizontal length scales necessary for

accurate simulations of total water levels. However, the accuracy and the associated

computational expense of the mesh are in direct conflict, which makes the mesh

development process challenging.

A comprehensive approach to automatically build sophiscated planar triangula-

tions (meshes) is developed in a toolkit called OceanMesh2D. In this software, reso-

lution is controlled via functions of seabed data and shoreline geometry. The most

challenging step of simplifying the shoreline boundary in the mesh is made automatic

with a sequence of mesh improvement strategies. The main result is that seamless

regional and global modeling systems can be built in minutes to hours automatically

and approximately reproducibly.

The toolkit is used to investigate the design of unstructured mesh resolution and

its impact on the modeling of barotropic tides along the United States coastlines. The

key findings indicate that pre-existing mesh designs that use uniform resolution along

the shoreline and slowly varying resolution sizes on the continental shelf ine�ciently
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discretize the computational domain. Instead, targeting resolution in narrow geo-

metric features and along large topographic gradients and estuarine channels, while

aggressively relaxing resolution elsewhere, leads to an e�cient mesh design with an

order of magnitude fewer vertices than a reference solution with comparable tidal

accuracy (±3% harmonic elevation amplitudes).

Lastly, coastal ocean models with overland floodplains induce computational

workload imbalances because dry elements incur zero computational cost. A ca-

pability to evenly distribute computational work dynamically as floodplain regions

wet and dry during the passage of a storm is developed for the ADvanced CIRCu-

lation model. The approach is based on partitioning the decomposition of the mesh

during run time so that the that the computational load is determined by the degrees

of freedom in wetted areas. I demonstrate that the implementation has a low over-

head cost and speed-ups of 10-45% can be achieved for real world coastal flooding

simulations.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Coastal flooding associated with tropical cyclones and other storms are a major

cause of loss of human life and property in many coastal cities in the United States

and around the world. The recent 2017 Atlantic Hurricane season resulted in $369.89

billion USD in damages along the United States eastern seaboard and Puerto Rico,

which was the costliest hurricane season to date for this region[142]. Coastal flooding

will only become more frequent in the future. Multiple studies have demonstrated

that the steady increase in mean sea levels will lead to a marked increase in the

frequency of severe and nuisance flooding events [104, 130, 155]. The global mean

sea-level is rising at an estimated rate of approximately 1.3-2.0 mm/year [43, 111].

Satellite altimetry data demonstrate that the global mean sea level rise is acceler-

ating at a rate of 0.084 ± 0.025 mm/y2 (since 1993) due to human-induced global

warming [109]. Given that coastal cities are often densely populated [14] and are

vulnerable to coastal flooding from hurricanes due to their low-lying topography,

modeling capabilities are essential to both understand and predict coastal flooding

in order to mitigate damage and loss of life. These modeling capabilities need to

be both accurate and fast in order to successfully aid in disaster preparedness and

timely preemptive measures.

Coastal flooding is forced by multiple hydrodynamical processes. The major pro-

cesses concern the astronomical tides, the mean sea level state, storm surge, wave
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Figure 1.1. The western North Atlantic study region that was explored in
this work. The continental shelf region is shaded in red and green. The

typical track of a tropical cyclone (i.e., hurricane) is indicated by the white
arrows and the various regions of interest described throughout the text are
labeled (GOM: Gulf Of Mexico, NA: North Atlantic, SA: South Atlantic,

MA: Mid-Atlantic).
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setup and run-up, and river discharge. Altogether, these processes can result in an

abnormal rise of water levels leading to flooding on occasion. The primary driver of

total water level variations are the astronomical tides, which are externally forced by

the periodic motion of nearby celestial bodies (i.e., the Moon and the Sun). These

nearby celestial bodies exert a gravitational e↵ect on the water column. The largest

tidal constituents are governed by the Moon’s orbital position (i.e., angle of declina-

tion, eccentricity of orbit, etc.) around the Earth and have periods of approximately

12-h [114]. Thus, the tides have wavelengths hundreds of kilometers in horizontal

lengthscale and travel at rapid speeds in the ocean. However, nearshore the shallow

seabed topography and irregular shoreline geometry largely control the tidal dynam-

ics and form, and these aspects have been extensively studied [91].

In addition to the tides, surface meteorology also explains a sizable component of

total water level variance. The meteorologically forced component of water levels this

work is concerned with are referred to as storm surges. Storm surge is mathematically

defined, under the assumption of tide-surge linearity, as the di↵erence between the

observed total water level and the water level that would occur solely from tidal

processes relative to a geodetic benchmark (e.g. local mean sea level). Surface

meteorology associated with the nearby passage of storms can generate surge events

specifically when prolonged surface wind stresses impart momentum into the sea

surface pushing a column of water onshore and low pressure anomalies raise the water

surface elevation through the inverted barometer e↵ect [114, 127]. Surge events are

frequent and intense on wide and shallow continental shelves that intersect with the

climatological storm track such as the western Gulf Of Mexico and the Southern

Atlantic Bight (Figure1.1; [107, 127]). Occasionally, the episodic rise in water levels

associated can lead to catastrophic coastal flooding producing water levels that range

from 3-m to 6-m, such as during Hurricane Ike [78], Hurricane Gustav [51], and

Hurricane Sandy [40].
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Figure 1.2. An overview of the two-dimensional (2D) mesh-based coastal
modeling approach.

Given the substantial damage storm surge events can have on coastal communi-

ties, there has been a vast amount of research dedicated to understanding and pre-

dicting coastal water levels using computer simulations. One avenue of this research

concerns the topic of numerical simulation. Continuous partial di↵erential equations

(PDEs) that describe the dynamics of fluid motion are derived from basic physical

principles and are discretely approximated on tessellations of space called grids or

meshes using numerical methods (e.g., Figure 1.2). Scientists and engineers utilize

numerical methods to approximate coastal ocean hydrodynamics by representing the

coastal domain using a mesh of polygonal elements. Programs such as the ADvanced

CIRCulation Model [96, ADCIRC] are widely used to solve the PDEs that describe

the coastal ocean circulations and contain countless options to improve the quality

of solutions and incorporate a variety of physics. In the work this dissertation is con-

cerned with, the simulation of coastal hydrodynamic processes involves generating a

mesh for a regional or even global ocean domain using geospatial information such as

a shoreline boundary and seabed topographic data and using this mesh to calculate

a solution with a solver like ADCIRC.

Accurate coastal flooding requires mesh elements of an adequate size that can

approximate the shoreline form as it exists in nature. The horizontal length scales
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of relevant coastal geometry vary by nearly four orders of magnitude (e.g., 10 m

to 100 km) and have a fractal geometry [82] making the mesh development process

challenging. Narrow waterways and restricted channels on the order of 10-m are

encompassed in larger regional/oceanic domains that may span 100’s of kilometers

(see Figure 1.3). The highly multiscale distribution of mesh resolution is necessary to

facilitate larger regional and global ocean model domains, which enable the full extent

of surface meteorology and non-local surface meteorological forcing associated with

tropical and extratropical cyclones to be resolved without the need for many smaller

individual models and nesting paradigms [19, 69]. Mesh resolution on the order

of 10-m and below is necessary to represent flood-control structures such as weirs,

dikes, coastal groins, and piers, which are all important for the accurate simulation of

street-level flooding [141, 148]. Thus, for simulations of coastal ocean hydrodynamics,

unstructured meshes are heavily favored over structured grid approaches as they can

flexibly vary in size to e�ciently conserve computational resources while conforming

well to the irregular shoreline geometry.

A number of practical decisions must be made in order to design a coastal ocean

model. These decisions concern how the available geospatial datasets that describe

the shoreline boundary, namely the estuaries, back-bays, and overland components

of the domain are represented in the mesh. The geospatial data used to guide the

mesh development process are often disseminated as structured horizontal grids called

Digital Elevation Models (DEMs). DEMs may have orders of magnitude disparity in

horizontal resolutions and limited/sparse spatial coverage. In the last two decades

however, technological improvements to Light Detection and Ranging (LiDAR) tech-

nology have created detailed scans of the coastal margins that now exist in the public

domain with horizontal resolutions on O(1-m). While the accuracy of the geospatial

information is continually improving and datasets have become more accessible to the

public, the size and format of the datasets introduce new challenges involved with
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Figure 1.3. The triangulation of a typical regional coastal model at various
cartographic scales. The green lines in the insets indicate the geometric

complexity of the internal type barrier structure that is modeled.
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the mesh development process for coastal modeling. These challenges are related to

the simplification of the often excessive details contained therein. In Chapter 2, an

approach is devised that to utilize LiDAR datasets for coastal modeling development.

In the current state, scientists and engineers hand-craft meshes by manually

drawing polygonal regions that define mesh refinement zones and shoreline bound-

aries, which hinders scientific reproduciblity. The variations in mesh resolution may

be guided with modeling experience [29, 85], considerations of dynamical processes

[135, 136], geometrical and topographic-based considerations [41, 57, 129], or some

combinations of all of the above.

Mesh developments often take place within a Computer Aided Design Graphical

User Interface (CAD-GUI) program, such as the Surface Modeling Systems (SMS)

software [162]. Often, resolution in the deep-ocean resolution is prescribed through

a tidal wavelength-to-gridscale criteria and finer resolution is often prescribed on the

continental shelf break zone [98, 153]. However, the e↵ect resolution heuristics have

on the simulation of coastal hydrodynamics has not been systematically explored.

Thus, the selection of meshing heuristics vary greatly between study-to-study.

There are some fundamental problems with the pre-existing heuristics (i.e., the

so-called “wavelength-to-gridscale heuristic”) as they tend to resolve the entire con-

tinental shelf zone with fine resolution over-discretizing the coastal domain. The

topographic-length scale heuristic to resolve bathymetric gradients with finer resolu-

tion also tends to produce exceedingly fine resolution in shallow depths (i.e., depth

!0) resulting in uniform resolution along shoreline boundaries. Given the range of

existing meshing heuristics, the utility and scientific basis of the meshing criteria

utilized in the near-shore and shelf areas of coastal modeling domains need to be

explored.

Nearshore the issue of mesh development becomes more confused and arbitrary

as users prescribe zones of uniformly small sized elements in what are perceived as
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“critical” regions to resolve shoreline geometry lengthscales. Inevitably this leads

to numerical instabilities and a great deal of di�culty in incorporating advective

acceleration terms into the calculation because the manual application of resolution

cannot readily consider the Courant number. As a result, the user is forced to hand-

edit the resolution zones of the triangulation and raise/lower/smooth the bathymetry

in an iterative fashion to achieve a more stable and, hopefully, more accurate solution.

The manual approach to building coastal mesh designs are slow and arduous taking

months to years to develop a stable and accurate triangulation.

Automated approaches are thus essential to further research e↵orts in coastal

modeling applications that use unstructured meshes. These automatic approaches

can potentially dramatically reduce model development times and the associated un-

certainties with the application of unstructured mesh resolution. Therefore, this work

makes the necessary algorithmic developments to support automatic mesh genertion

for coastal ocean circulation modeling. Implicitly, the work also demonstrates that

automated mesh generation technology has reached a level where users can largely

forgo the manual supervision that was once necessary for high-fidelity coastal mesh

development. The ease and drafting of new mesh designs enables more general sci-

ence questions to be asked: how does the simulation of barotropic tides respond

to the variably representing shoreline geometry and seabed topography? What are

the sources of error in tidal solutions when variably resolving the shoreline and how

can they be reduced? While it’s well known that poor choices at the initial mesh

design stage may compromise the predictive accuracy of simulated water levels due

to numerical errors [73], a thorough assessment of commonly employed mesh design

practices in a realistic domain and problem configuration has not been explored with

a great level of detail or rigor.

High-fidelity meshes of the coastal margins rapidly become prohibitively expensive

to compute serially as the study region expands to a regional domain or the size of ele-
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ments reduces. Therefore, parallel processing techniques and high-performance com-

puters are essential for the development of multi-million degrees-of-freedom (DoF)

regional coastal hydrodynamic models. For example, recently a 9M DoF mesh of the

Indian and Pacific Ocean has been created requiring O(1000 ranks) to process tidal

results in wall-clock days[122], and represents one of the largest 2D coastal models

developed to date in our community. Parallelism is enabled by decomposing a mesh

into subdomains and assigning each subdomain to a processor achieving a state where

each processor is responsible for an equal amount of computational work.

To partition the work between processors, unstructured meshes are often repre-

sented as an undirected graph whereby the centroids of the elements represent nodes

(i.e., dual graph), the connection of the nodes (i.e., edges) of the graph represent com-

munication patterns and data dependencies [77]. The goal then is to partition the

graph so that the number of edges cut by the subdomain boundaries is minimized

while distributing roughly equal computational work to all the processors. While

the partitioning problem is NP-hard [58], graph partitioning algorithms exist [e.g.,

83, 117, 133] that utilize e�cient heuristics to solve the problem and have enjoyed

success in practice.

The performance of parallel simulations is critically dependent on the assignment

of computational work to processors in a distributed computing environment, which

is referred to as load balancing [46]. In applications with static computational work-

loads (i.e., when the number of computations does not change in time or space), load

balancing is accomplished via a pre-processor call to an application that assigns mesh

components to processors before the computation begins. Since the work distribution

doesn’t change, this step is done once allowing the pre-processor to use paradigms

that may be ine�cient and depend on file I/O. This type of approach to load bal-

ancing is referred to as static load balancing. In contrast, methods such as adapative

mesh refinement strategies [64, 92] have computational workloads that change dur-
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ing the course of simulation and often in ways that are not not known ahead of

time. These type of applications require that load balancing occur during run-time

to maintain an e�cient parallel process, hence the usage of the word dynamic. How-

ever, dynamic load balancing (DLB) techniques present software engineering hurdles

because: 1) they require that the pre-processor become a component of the appli-

cation and execute during runtime rather than before it and 2) sometimes the load

must rebalanced frequently during the course of the simulation to maintain a target

performance level. As such, components such as file I/O and serial algorithms that

were acceptable in static load balancing must be avoided. The success of a dynamic

load balancing application is especially sensitive to ine�cient algorithms since the

speed of the parallel application depends on its slowest component.

In the context of coastal ocean modeling, meshes are often created with large

floodplains composed of high resolution elements primarily to research coastal inun-

dation from wind-driven, hurricane-forced storm surges, for real-time predictions of

flooding, and the long-term design for coastal flooding mitigation [e.g., 51, 60, 78,

134]. Due to the e↵ort involved in validating the mesh and demonstrating its ac-

curacy and stability in realistic flooding scenarios, typically only one or two meshes

are created, built, and then validated against observations for a given coastal ocean

domain. Considering the di�culty and work involved with designing high-resolution

coastal meshes, scientists and engineers build these models in such a way to account

for a variety of categorically severe flooding, which results in a large quantity of DoFs

overland in a dry-state. Further, due to the fact that coarser mesh resolution sizes

(>100-m) produce inaccurate inland flooding and flood swaths can often extend up

to 10-m above sea level [84], inevitably this leads to approximately 30-70% of the

total mesh remaining in a dry-state for the majority of the simulation.

In ADCIRC and in many other 2D coastal hydrodynamic solvers, overland DoFs

that are in a dry-state are masked in the calculation by multiplying by zero as the
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system of equations are prepared for calculation [47, 103]. Thus, the dry-state com-

ponent of the mesh are involved with an equal amount of computational work as the

wet-state DoFs despite their trivial zero-valued solution. In existing codes such as

ADCIRC, the removal of these dry-state DoFs from the problem leads to a time-

evolving, dynamic computational workload since the wet- and dry-state DoFs are

continuously switching in flooding events. Overall, to develop dynamic load balanc-

ing capabilities in ADCIRC with the goal to elminate/reduce dry-state DoFs from

the calculation requires a significant amount of modifications to pre-existing static

solvers.

In order to facilitate dynamic load balancing in an application such as ADCIRC,

the software design must support the ability to relocate data and its associated depen-

dencies during runtime. Since these movement patterns of data are not known before

the simulation, fast and e�cient unstructured communication algorithms need to be

used that can scale with the application [e.g.,Rendezvous algorithm; 120]. Developers

also need tools to e�ciently manage the location of data dependencies as dynamic

load balancing problems constantly change local array sizes due to the movement

of data between processors. In a distributed computing environment, determining

ownership of data is a non-trivial problem. Altogether, these di�culties force the

user to program the support algorithms into their implementation, which can be

a time-consuming and unproductive task. For this exact reason, software toolkits

like Zoltan [24], Charm++ [81], and PetSC [12] have been developed. Often these

packages are combinations of algorithms written in C and C++ and are often em-

ployed in parallel unstructured and/or adaptive finite element computations. In this

work, I extensively use the Zoltan toolkit [24] to provide essential functionality in the

developed application.

As the models of the coastal margins continue to grow in size and complexity, it is

vitally important to make e�cient usage of the expanding computational resources at
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our disposal. In order to reduce the cost of modeling the floodplain in regional coastal

models, I have developed a new capability in the ADCIRC shallow-water equation

solver to Dynamically Load Balance (ADCIRC+DLB). ADCIRC+DLB redistributes

the computational workload during run-time to reflect time-evolving flooding in the

computational domain. It integrates the once static pre-processor into the ADCIRC

solver but with vastly more e�cient parallel processing algorithms.

A great deal of work has enabled ADCIRC+DLB to contain the majority of fea-

tures as the static ADCIRC suite, with the key exception for the SWAN wave-coupling

ability [48]. Due to the design of the software, the usage of the DLB capability does

not require any additional alteration of pre-existing meshes; however, it is important

that the mesh is of su�cient geometric quality as is later pointed out. The dynamic

case of load balancing is a general case of the static one, so ADCIRC+DLB can

be used to accelerate the pre-processing operations by a large factor over the static

pre-processor in cases that models contain many boundary conditions. Overall, the

load balancing capability is shown to reduce the cost of a real world calculations of

coastal flooding with a reduction in wall-clock time observed that is proportional to

the number of DoFs in a dry-state. Perhaps most significant is that ADCIRC+DLB

enables a new paradigm of mesh design whereby a nearly uniform resolution can

be applied overland to model to represent the floodplain as the associated overland

compute cost is significantly reduced.

1.2 Layout of Dissertation

This work is concerned with improving our coastal modeling capabilities by (1)

making the mesh development process more reproducible, (2) reducing the time and

e↵ort spent in developing high-resolution coastal models, (3) improving the speed of

the calculation of the total water levels by dynamically removing the dry-state DoFs

from the mesh.
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In Chapter 2, I describe the development of an open-source library of codes called

OceanMesh2D that makes the pre-existing manual approach to coastal model gen-

eration no longer the only option. I demonstrate that this approach is capable of

integrating a variety of high-resolution geospatial datasets simultaneously with a

number of user-defined and varying sizing and geometry constraints by automati-

cally adjusting resolution sizes according to a priori functions of shoreline geometry

and seabed topography. A focus has been placed on automation and e�ciency when

developing regional coastal models using the OceanMesh2D library. Particularly, the

requirement to adapt shoreline boundaries that may contain excessively fine details

to the user-requested distribution of vertices before mesh generation is no longer re-

quired. The shoreline adaption step now occurs automatically in the mesh generation

process, which greatly helps the practical usability of the automated mesh generation

approach for solving engineering problems quickly. Chapter 2 in an abbreviated form

has been accepted to the journal Geoscientific Model Development.

In Chapter 3, I apply the OceanMesh2D library to the development of many

realistic, high-resolution (minimum resolution 50-m), unstructured triangular meshes

that are used for the forward simulation of barotropic tides along the East and Gulf

coasts of the United States. These experiments are used to research the utility of the

developed automatic mesh generation tools and to understand how to more e�ciently

develop high-fidelity meshes for the prediction of total water level. The main findings

of this study demonstrate that the rate of mesh size expansion along the continental

shelf margins can be substantially enlarged but this requires the targeted placement of

resolution along bathymetric gradients. The overall result is a lightweight mesh with

roughly one order of magnitude fewer vertices than the initial 10.8M vertex reference

solution and that has a comparable accuracy in the simulation of tidal harmonics.

Among many other findings, an automatic mesh size function that resolves es-

tuarine channels is investigated. The usage of this new mesh size function is shown
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to support the larger elemental size expansion rate in the inner shelf and nearshore

environment where the other meshing heuristics perform poorly and can easily over-

resolve bathymetyric gradients due to noise. The resolution along significant estuarine

channels helps to maintain the accuracy of the reference tidal solution in the inner

shelf and nearshore zones by accurately representing channel morphology and flux

of tidal energy into the nearshore estuaries. Chapter 3 in a modified form has been

submitted to the journal Ocean Modelling.

In Chapter 4, I describe the development and performance of ADCIRC+Dynamic

Load Balancing (ADCIRC+DLB). This software dynamically removes the floodplain

from the calculation in the ADCIRC shallow water equation solver by re-decomposing

the mesh between processors. I document the methods and theory of the approach

and then demonstrate the capabilities in a realistic forecasting application with a

hindcast of Hurricane Irene in North Carolina. The DLB capability leads to speed

ups over the static approach by nearly 45% (approximaately 4% less than the the-

oretical maximum speed up) with a maximum overhead of less than 2.33% of the

total static time. The key advantage of this approach is that the majority of model

functionality and options are retained, which enables modelers to run existing mod-

eling systems with the technology. The development of this approach will support

the next-generation of coastal hydrodynamic models with the ADCIRC solver that

will contain the majority of vertices overland. This chapter will be submitted to the

journal Computers and Geosciences.
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CHAPTER 2

AUTOMATED MESH GENERATION FOR COASTAL HYDRODYNAMIC

MODELING

2.1 Overview

In this chapter, I document an approach and the related computational mechanics

to generate unstrucutured meshes that are used for the simulation of coastal ocean

hydrodynamics. This approach is embedded into an open-source library of codes

called OceanMesh2D that has been released to the community through version con-

trol software and is documented in a user guide [129]. It is currently being used

for a variety of ongoing research projects with the financial support from National

Oceanic and Atmsopheric Administration, Army Corp. of Engineers, and Factory

Mutual Global Insurance who are all very interested in more e�ciently and objec-

tively developing unstructured meshes for coastal circulation problems. The hope

is that new developers will continue the work as the project should be a commu-

nity based e↵ort. The approach detailed here represents a significant depature from

the existing manual practices that have been and are being used to develop coastal

ocean modeling systems. The greatest aspects of di↵erence in this approach are: (1)

how geospatial datasets are incorported into the model development procedure, (2)

the e�ciency and automation of the model development procedure, (3) the resulting

model’s numerical stability when simulataion is attempted with it, (4) and model re-

produciblity. This chapter, in an abbreviated form, has been accepted to the journal

Geoscientific Model Development [131].
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2.2 Introduction

Many phenomena in the coastal ocean, such as tides, tsunamis and storm surges,

can be accurately modeled by the shallow water equations. Unstructured meshes are

often used for numerical simulations of the coastal ocean because they can resolve

the large range of horizontal length scales necessary for accurate hydrodynamic pre-

dictions and can conform well to complicated shoreline boundaries. The accuracy

and the associated computational expense of the mesh are in direct conflict, which

makes the mesh design process challenging. Computational work is governed by the

distribution of vertices (mesh resolution) and accuracy is determined, in part, by the

representation of relevant geometrical and bathymetric features that may influence

the simulation. Due to this balance between accuracy and computational work, the

prescription of the mesh resolution often leads to a highly subjective mesh gener-

ation process which is often handled through graphical user interface (GUI) based

software, e.g., Surface-water Modeling System 1, Blue Kenue 2 and Delft’s Flexible

Mesh suite 3. Although GUIs allow the user to carefully edit detailed aspects of

the mesh they do not promote automation, objectivity, or reproducibility. To ad-

dress this issue, the ocean modeling community have developed approaches and tools

to support the automated generation of unstructured meshes for coastal circulation

problems [8, 17, 31, 41, 64, 65, 73, 89, 126]. Most works have either tried to minimize

topo-bathymetric interpolation error on the mesh [e.g., 64] or construct the mesh

based on resolving relevant physical processes in the domain and/or preserving the

geometry of the shoreline boundary [e.g., 41, 57]. An iterative a posteriori method

which aims to keep the local truncation error constant throughout the mesh has also

1https://www.aquaveo.com/software/sms-surface-water-modeling-system-introduction

2https://www.nrc-cnrc.gc.ca/eng/solutions/advisory/blue_kenue_index.html

3https://www.deltares.nl/en/software/delft3d-flexible-mesh-suite/
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been employed [73].

Modern interpreter-based programming environments such as MATLAB and Python

are attractive to many users to develop mesh generators because they include a

plethora of built-in or community developed functions, toolboxes, and packages that

are freely available. For instance, a simple and easily adaptable mesh generator

based on the concept of force equilibrium and written in a few dozen MATLAB lines

is DistMesh2D [118]. The simplicity of the force-equilibrium algorithm makes it at-

tractive as a general-purpose mesh generator by allowing users and developers to

adapt it for various applications [e.g., 55, 94, 110, 149]. However, due to the general

nature of DistMesh2D, it tends to be computationally ine�cient for the large and

highly multi-scale geophysical domains that are encountered in coastal ocean hydro-

dynamic modeling problems. Additionally, there are a number of pre-processing steps

that must be performed to prepare the geospatial data for meshing and a number of

post-processing steps to make sure the mesh is amenable for simulation. For instance,

one must obtain a shoreline boundary that will lead to a mesh that is practical to

simulate with. By integrating the tools to pre-process the geospatial data into the

mesh generator directly, it reduces the time spent performing these essential tasks

and largely automates the mesh development process.

In a related previous work, the Advanced Mesh generator [ADMESH; 41] im-

plemented a DistMesh2D based coastal ocean mesh generator in MATLAB. In this

work, we build on many of the ideas described in ADMESH with the following pri-

mary improvements: a) a focus on computational e�ciency to enable the software to

become practically useful even for large geophysical datasets(e.g., ⇠1 km resolution

global topo-bathy) in the MATLAB scripting language; b) the inclusion of pre- and

post-processing workflows; c) a greater variety of mesh size functions and flexibility

in their application which o↵ers more control over mesh resolution placement; and

critically: d) code written in an open-source environment for the benefit of the com-
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munity. The codes place emphasis on facilitating automatic mesh design workflows

that lead to the creation of meshes and the necessary model inputs for a numerical

simulation. These mesh generation workflows (i.e., a user-specified MATLAB control

script) are typically represented by a few lines of MATLAB code and take between

minutes to an hour to generate relatively large, multiscale, high-fidelity meshes (po-

tentially global-to-channel scale) and their auxiliary components automatically.

The software to build coastal meshes is written in an objected-oriented framework

that is divided into a set of standalone classes related to: 1) processing geospatial

datasets used in the mesh generation process; 2) computing mesh size functions;

3) performing the mesh generation; 4) storing, visualizing, and post-processing the

mesh output. Special attention has been made to ensure that only open-source

functions are required to generate a mesh. Further, in its current state the software

contains a number of post-processing functions specific to the ADvanced CIRCulation

model [ADCIRC; 96], but these can be adapted to other solvers in the future. The

rest of this paper is structured as follows: we begin by introducing the framework

and organization of the code followed by a detailed description of each of the four

standalone classes and ending with a discussion on how the software can be useful

for coastal ocean model development.

To demonstrate the overall workflow and the design of the software, three exam-

ples located along the East Coast and Gulf Coast of the United States of America

are documented (Fig. 2.1). The first example produces a mesh of the Jamaica Bay

estuary in New York (JBAY), demonstrating the utility of the software in incorpo-

rating high-resolution (⇠1/9-arc second or approximately 3-m horizontal resolution)

LIght Detection And Ranging (LIDAR) datasets with fine (⇠15-m) resolution trian-

gular elements nearshore. The second example meshes the Galveston Bay in Texas

(GBAY), demonstrating the utility of a new mesh size function that can be used to

target resolution along deep-draft marine navigation and tidal channels. The third
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example demonstrates how the software can produce truly multiscale unstructured

meshes in less than one hour by building a mesh of the Western Atlantic Ocean with

focused refinement around Puerto Rico and the U.S. Virgin Islands (PRVI). See Ta-

ble 3.1 for details of the various options/parameters that were used to generate these

example meshes.

Its important to di↵ereniate what constitutes a “high quality” mesh for this prob-

lem, as “quality’ is largely application dependent. Note that a “high-quality” mesh

and an “high fidelity” (i.e, a model that produces solutions that agree well with ob-

servtions) one are not necessarily the same. Often, mesh quality can be viewed as

a combination of geometric element measures, application dependencies, and numer-

ics [138]. For 2D shallow water flows, a high quality mesh is often determined by

geometric measures (i.e., nearly all equilateral triangles) with a lower bound on the

minimum element quality and the majority of vertices having nearly six edges con-

nected to it [9, 30, 138]. When most elements have a high-degree of regularity in the

vertex-to-vertex connectivity, it improves the mesh size transitions (gradation) are

smoother, the condition number of finite element coe�cient matrices is reduced, and

the memory footprint of the finite element solver can be reduced [102]. A high degree

of regularity in the vertex-to-vertex connectivity also tends to coincide with a mesh

with many equilateral or nearly equilateral triangles. In this Chapter, I am focused

on generating meshes with a high geometric quality and in Chapter 3, I explore the

e↵ects of variably resolving coastal mesh domains with the hope to produce a high

fidelity model.

2.3 Software Architecture Overview

The automated generation of geophysical-use unstructured meshes often requires

a number of user defined parameters and a variety of geospatial data as inputs. As

a result, the mesh is strongly related to the algorithms and data that were used to
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Figure 2.1. The geographical location and triangulation of the three meshes
used as examples in this work. The minimum mesh sizes (h0 ) are

annotated in black text and the names of the digital elevation models
(DEMs) used in the construction of the mesh size functions are annotated
in red text on each panel. The colormap indicates topographical data

(bathymetric data was removed for production of this figure) in the DEMs,
which are freely available through the NOAA Bathymetric data viewer

website (https://coast.noaa.gov/dataviewer).
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create it. These task- and object- specific properties of the mesh generation process

provide the motivation behind the development of an objected-oriented programming

(OOP) approach. In this software, the use of OOP leads to automation and promotes

the usage of e�cient workflows.

OceanMesh2D is composed of four classes (geodata, edgefx, meshgen, and msh)

and a utilities directory containing various standalone functions. The geodata class

is used as a pre-processor to mesh generation and creates an appropriate meshing

boundary from user-supplied geospatial datasets and inputs. The edgefx class enables

the user to build standardized mesh size functions with a variety of parameters and

constraints. The meshgen class is associated with mesh generation inheriting various

options from the geodata and edgefx classes. The msh class is a data storage class

for the mesh and related attributes. These four classes are constructors for creating

specific instances of each class otherwise known as objects. All classes are activated

through the use of name-value pairs where the “name” represents an option and the

“value” is the parameter relevant to that option.

Although each individual class is standalone, there exists a specific workflow that

is typically followed to build coastal ocean meshes with the OceanMesh2D software

(Fig. 2.2). Numerous instances of the geodata and edgefx classes can be combined

to seamlessly mesh high-resolution insets contained within wider coverage geospatial

datasets. The ability to incorporate datasets over a wide-range of scales is particularly

useful and pragmatic given the finite computational memory and highly-variable

horizontal resolution of available high-resolution topo-bathymetric data.

2.4 Component Design

In the following section, each of the four classes that comprise the approach to

coastal ocean mesh generation are described.
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geodata: process geospatial data

edgefx: build mesh size function

meshgen: generate mesh
based on mesh boundaries
and mesh size function

msh: store and visu-
alize mesh topology

Figure 2.2. Standard workflow in OceanMesh2D.
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2.4.1 Mesh generation: meshgen class

Mesh generation is achieved through the use of the DistMesh2D algorithm with

a number of modifications to help improve the quality of the final triangulation, the

speed of the mesh generation, and the memory footprint of the overall application,

which are documented in this section. Without the modifications to the original

DistMesh2D algorithm, the regional multiscale coastal meshes that I am exploring

are not tractable to generate. It’s noted that the class-based architecture of Ocean-

Mesh2D software could additionally support other mesh generation packages besides

DistMesh2D, such as JIGSAW-GEO [57]. In its current state, the class is a wrap-

per function around the DistMesh2D algorithm that automatically uses classes that

describe the meshing domain and the mesh size functions.

For coastal mesh generation, a key advantage of using the DistMesh2D smoothing-

based algorithm over Delaunay refinement and/or Frontal Delaunay mesh generation

algorithms is that the boundary is implicitly defined through a signed-distance func-

tion. While the boundary of the meshing domain is stored as a set of linear segments,

these segments do not represent the boundary of the final mesh as all vertices can

move during mesh generation in accordance with the mesh size function. The final

mesh boundary that approximates the shoreline is thus dependent on the mesh size

function and post-processing strategies that we employ to ensure that there are no

self-intersecting boundaries or small disconnected portions of the mesh. Thus, the

need for shoreline approximation pre-processing [e.g. 66] to define the mesh bound-

ary as required by Delaunay refinement and/or Frontal Delaunay mesh generation

approaches [65] is eliminated. In this section, we document the mesh improvement

strategies that occur during the execution of the DistMesh2D algorithm that lead to

a high-quality approximate representation of the domain and are in congruence with

mesh size functions.
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2.4.1.1 DistMesh2D Algorithm

The DistMesh2D algorithm is based on a physical analogy between the edges

of a Deluanay triangulation and a two-dimensional (2D) truss structure [118]. In

mathematics and computational geometry, a Deluanay triangulation is a type of tri-

angulation in which no vertex lies within the circumcircle of any triangle (so-called

“empty circumcircle property”) [26]. In the DistMesh2D algorithm, equilateral tri-

angles occur when an external force is applied to the edges of the triangles and the

vertices of the triangulation are allowed to freely move. In this approach to mesh gen-

eration, the external force is varied according to a mesh size function, which enables

the generator and thus the user to carefully control the placement of resolution in the

type of comptuational domains that are encountered in coastal modeling applications.

This algorithm is considered a smoothing-based approach to mesh generation with

the general case being the Laplacian operator (i.e., the vertices are moved toward

the average of their neighbors). In contrast to smoothing-based mesh generators,

restricted Delaunay-refinement schemes [57] and advancing-front type schemes[162]

can also be used to generate two-dimensional planar meshes for coastal modeling

applications. However, a benefit of DistMesh2D is simplicity: the whole algorithm

is roughly 30 lines of code and does not require the complex data structures that

are necessary to store and edit the triangulation incementally as is the case in other

approaches.

Here I briefly describe the mathematical details of the DistMesh2D algorithm. I

have adopted the mathematical notation that was originally presented in [87]. Let N

be the number of vertices in the mesh and p be the N -by-2 array of vertex locations.

The edges of the triangles then relate to bars of a 2D-truss structure and the vertices

correspond to joints of the truss. Each bar eij = [pi,pj] exerts a varable force

f(pi,pj) that depends of the ratio of its current length ||eij|| to an ideal length rij

that is described by a mesh size function h(p). A salient aspect of the DistMesh2D
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algorithm is that, the case of a triangulation with the majority (e.g., > 90%) of

triangles containing equaliateral angles tends to correspond to:

F (p) = 0 (2.1)

where F (p) is a N -by-2 array that describe the x- and y-components of the force

exerted by F (p). Equation 2.1 is a stationary solution of the following system of

ordinary di↵erential equations given an initial point distribution p0:

p(0) = p0

dp

dt
= F (p(t)), t � 0

(2.2)

This problem is discretized explicity in time (tk = �kt,pk = p(tk)) using an Euler

forward approach leading to an iterative scheme:

pk+1
i = pk

i +
X

j2Ni

�tf(pk
i ,p

k
j )

ekij
||ekij||

, i = 1, ..., N, (2.3)

in which Ni is the neighborhood of the vertex i or the connected vertices to vertex

i and �t is set to 0.10 seconds. Note that values of �t greater than 0.10 s exhibit

“numerical instabilities” and will not reach the stationary condition (Eq. 2.2). Also

note that a variety of alternative timestepping schemes were explored to solve the

system (i.e., Runge-Kutta, Backwards Euler) but none outperformed Eq. 2.3 in terms

of the time it took to reach an equilibrium state for realistic coastal problems.

The force exerted on each edge of the triangulation in the original algorithm was

purely replusive and mimicked the behavior of a linear spring following Hooke’s law:

f(pk
i ,p

k
j ) =

8
><

>:

r
k
ij � ||e

k
ij|| if ||ekij|| < r

k
ij,

0 if ||ekij|| � r
k
ij

(2.4)
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In the force function evaluation, rij is computed via the mesh size function h

through:

r
k
ij = !s

k
h
k
mid (2.5)

where ! was set to 1.2 following [118] and hmid is the midpoint of eij. The scale factor

s
k was originally the sum of the root-mean square of the measured eij as compared

to the ideal bar lengths rij (Eq. 2.6) and is designed to inflate the bars so they move

move around more quickly in the domain.

s
k
ij =

P
i,j ||e

k
ij||

2

P
i,j(h

k
i,j)

2
(2.6)

However, to acclerate mesh generation for realistic coastal modeling problems

that spanned 2 to 4 orders of mangtitude in horizontal lengthscale, the scale factor

as shown in Eq. 2.6 was found to be ine↵ective and hindered convergence to the

stationary condition. Since the distribution of sk is highly skewed in the case of

multiscale coastal ocean mesh generation with locally high resolution elements, the

ratio as calculated by Eq. 2.6 would not su�ciently inflate or shrink rij for the

longer/shorter edgelengths in the meshing domain. Instead, a di↵erent scale factor

was implemented based on the ratio of the median edgelength to the edgelength as

described by h(p).

s
k
ij =

< ||ekij|| >

< h(pk
ij) >

(2.7)

where < >̇ denotes the median over all bars. The ratio of the medians in Eq. 2.7

was found to better approximate the skewed distribution of edgelengths in multiscale

coastal meshes than the ratio of the root-mean square edgelengths and more capable

of accurately inflating or shrinking the bars.

As was documented in both [87] and [25], the Eq. 2.4 can be improved by utilizing
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a modified force function that allows for both attraction and replusion between the

vertices of the mesh:

f(pk
i ,p

k
j ) = (1� (

||e
k
ij||

r
k
ij

)4)exp(�(
||e

k
ij||

r
k
ij

)4) (2.8)

The additonal weak-attraction behavior in Equation 2.8 accelerates convergence to

achieve an equilibrium state and thus is used in lieu of Equation 2.4.

In this meshing algorithm, the boundary of the meshing domain is implicitly

defined through the use of a signed distance function. In the following, I precisely

define the notion of a signed distance function. Let ⌦ be a subset of IR2 and a polygon

be a piecewise linear curve composed of a set of vertices S = (s0, s1, ..., sN) listed in

consecutive order in which s1 = sN otherwise si 6= sj, 8i = 1, N (i.e., the polygon

is not self-intersecting). The mesh domain ⌦ is then defined as the intersection of a

polygon S that represents the shoreline and a polygon represented the bounding box

bbox or extents of the meshing domain.

⌦ = S \ bbox (2.9)

Within ⌦, the signed d is defined as a mapping d⌦ : IR2
! IR

d(x)⌦ = s⌦(x) min
y2@⌦

(||x� y||) (2.10)

where || · || is the standard Euclidean norm in IR2 (i.e., the distance to the boundary

of the meshing domain), x,y are points, and the sign function s⌦ is given by:

s(x)⌦ :=

8
>><

>>:

�1, if x 2 ⌦.

+1, if x 2 IR2
\ ⌦.

(2.11)
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If x lies within ⌦, then d(x) will be negative. It follows from the above:

⌦ :=

⇢
x 2 IR2 : d(x)⌦  0

@⌦ :=

⇢
x 2 IR2 : d(x)⌦ = 0

(2.12)

The signed distance function d(x)⌦ serves as a implicit representation of @⌦ and

is used to form mesh size functions (see section 2.4.4) and during the execution of

the meshing algorithm. An example of a signed distance function is illustrated in

Figure 2.3. While the boundary of the meshing domain is stored as a set of piece-

wise linear segments, these segments do not represent the boundary of the final

mesh as all vertices can move during generation in accordance with the size function.

The final boundary that approximates the shoreline is thus dependent on the mesh

size function and post-processing strategies that are employed to ensure that there

are no self-intersecting boundaries or small disconnected portions of the mesh ex-

ist. Thus, the need for shoreline approximation pre-processing [e.g. 66] to define the

mesh boundary as required by Delaunay refinement and/or Frontal Delaunay mesh

generation approaches [65] is eliminated. In this section, we document the improve-

ment strategies that occur during the execution of the DistMesh2D algorithm which

altogether lead to a high-quality approximate representation of the domain and are

in congruence with mesh size functions.

The evaluation of the signed distance function for regional coastal domains can

quickly become prohibitevly expensive as the nearest distance to the boundary must

be computed for every vertex in ⌦. To improve the e�ciency of the calculation, the

signed distance function is computed through a combination of the MATLAB class

version [11] of the Approximate Nearest Neighbor (ANN) method [7, 106] (to obtain

the absolute distance), and Dr. Darren Engwirda’s open source and fast points-

in-polygon test (inpoly.m) function (to get the sign). The ANN method has high
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Figure 2.3. Panel (a) illustrates an example of a mesh size function, which
is used to create the triangulation depicted in panel (b). Panels (c) and
panels (d) demonstrate how a coarser minimum element sizes naturally

lead to a simplification of the meshing boundary (red lines).
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computational e�ciency with a negligible memory footprint in comparison to the

dsegment.m function in the original DistMesh2D, and inpoly.m is several hundred-

fold quicker (O(logN) vs. O(n2)) than MATLAB’s built-in inpolygon.m.

2.4.1.2 Termination criterion

Smoothing-based mesh generation approaches, like DistMesh2D, have no theoret-

ical guarantees of minimum triangle quality and thus may take a long time to, or may

never, reach a desired quality. As a result, heuristics are required to determine when

to exit the mesh generation step. In the original DistMesh2D algorithm, Persson and

Strang [118] proposed a termination criterion based on convergence to a configuration

of vertices in which negligible movement of the mesh vertices would occur with addi-

tional meshing iterations. In practice, my studies have found that a configuration of

vertices with negligible movement is di�cult to achieve within hundreds of meshing

iterations for realistic coastal ocean mesh domains because of the irregular shoreline

boundary and mesh size functions than lead to resolution with orders of magnitude

di↵erence in sizes. Thus, an alternative termination criterion is proposed based on

geometric element quality.

A geometric measure of triangle equilateral-ness:

qE = 4
p
3AE

 
3X

i=1

(�2
E)i

!�1

(2.13)

where AE is the area of the triangle and (�E)i is the length of the i
th edge of the

triangle. qE = 1 corresponds to an equilateral triangular element and qE = 0 indicates

a triangle that degenerates to a line. A mesh with a su�ciently high minimum bound

on qE is often desired [57, 118, 138]. However, a minimum bound on qE is a strict

measure for large domains with millions of elements and complex shoreline features,

and is di�cult to achieve within the modified DistMesh2D algorithm. Instead, the
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following termination criterion is used:

qL3�(t) = qE(t)� 3�qE(t) > 0.75 (2.14)

where t indicates the meshing iteration, the over-line and � denote the mean and stan-

dard deviation respectively, and qL3� is the “three-sigma lower control limit” element

quality, used as a proxy for the minimum element quality. Upon termination through

the above criterion, the vast majority (>95%) of triangles are of adequate geometric

quality. In the approach used here, a number of mesh cleaning steps are performed

after this mesh generation termination criterion has been met (Sect. 2.4.1.4) in order

to improve a typically small number of the worst quality (Fig. 2.4).

As the release of V2.0 of OceanMesh2D, a stricter geometric critera was intro-

ducted. This termination critera was based on geometric quality saturation instead

of an absolute threshold. Specifically, mesh generation ceases when the following

condition is met:

|qL3�(t+ 1)� qL3�((t)| < 0.01 (2.15)

where t represents a meshing iteration. In other words, termination of the program

occurs when the lower 3rd geometric quality no longer continually improves or be-

gins to degrade more than 1% during the subsequent meshing iteration. In practice

Eq. 2.15 tends to produce higher-geometric quality meshes as the qL3� is higher upon

exit; however, this requires between 20 to 30 more meshing iterations than Eq. 2.14

to reach the termination state.

2.4.1.3 Mesh improvement strategies during mesh generation

Approximately every ten meshing iterations the qL3� element quality starts to

saturate. The termination criteria can be met more quickly by relying on the following
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Figure 2.4. The geometric triangle quality q, Eq. (2.13), as a function of
iterations in the mesh generation process for the three mesh examples

(Fig. 2.1 and Table 3.1). The dotted and solid lines indicate the
progression of quality metrics with the mesh improvement strategies turned

o↵ and on, respectively, during mesh generation. At the end of mesh
generation using Eq. 2.14 to determine termination, a secondary round of
mesh improvement strategies are applied and the resulting quality after
this step is indicated by the colored asterisk. In each panel, the dotted

vertical black line demarcates when the mesh generation process finished.

mesh improvement strategies that are conducted every ten iterations (except item 4

which is executed every meshing iteration):

1. Edges in the mesh that are greater than two times the length as given by the

mesh size function (at the midpoint) of the edge are bisected.

2. Edges that are half as short as their intended length are deleted.

3. A vertex not on the mesh boundary that is connected to less than or equal to

four vertices is deleted (this is also performed when the termination criterion

is satisfied).

4. Triangles with exceedingly thin angles (< 5�) and large angles (> 175�) are

removed every iteration.

Improvement strategies one and two add and delete vertices when they are part

of edges that are too long and short, which produces a set of new edges that more
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closely approximate the mesh size function. Improvement strategy three directly

reduces the occurrence of low vertex-to-vertex connectivity (valency of three or four)

where a valency of six is ideal [30]. Note that improvement strategy one also helps

to reduce high vertex-to-vertex connectivity indirectly by avoiding steep transitions

of in the element size where larger valencies greater than six tend to develop. The

fourth improvement strategy removes triangles with small and large angles allowing

neighboring vertices to form a triangulation that has a better geometric quality.

I demonstrate the benefit from using these mesh improvement strategies through

the three example meshes (Fig. 2.1, Table 3.1). The time evolution of the geometric

quality demonstrates the benefit directly from these mesh improvement strategies.

Figure 2.4 illustrates that in all three examples the mesh improvement strategies lower

the number of iterations necessary to achieve the termination criterion. Further, the

rate at which qL3� increases is accelerated when mesh improvement strategies are

enabled. For the development of large multi-scale meshes, 20-50 iterations can often

save between 5-20 minutes for the problems to reach the termination criterion. Based

on the termination criterion and the improvements listed here, we generally find

that complex coastal ocean meshes are generated in approximately 30-100 iterations.

Thus, the maximum allowed number of iterations is commonly set to 100, which

typically takes a few minutes to half an hour to compute depending primarily on

the geometric complexity of the boundary and the ratio of domain size to minimum

element size.

2.4.1.4 Mesh improvement strategies after mesh generation

After mesh generation has terminated, a secondary round of mesh improvement

strategies is applied that is focused towards improving the geometrically worst quality

triangles that often occur near the boundary of the mesh and can make simulation

impossible (e.g., Fig. 2.5(a)). Low quality triangles can occur near the mesh bound-
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ary because the geospatial datasets used may contain features that have horizontal

lengthscales smaller than the minimum mesh resolution. To handle this issue, a set

of algorithms are applied that iteratively address the vertex connectivity problems.

The application of the following mesh improvements strategies results in a simplified

mesh boundary that conforms to the user-requested minimum element size.

Topological defects in the mesh the can be removed by ensuring that it is valid,

defined as having the following properties:

1. The vertices of each triangle are arranged in the counter-clockwise order.

2. Conformity: a triangle is not allowed to have a vertex of another triangle in its

interior.

3. Traversability: the number of boundary segments are equal to the number of

boundary vertices, which guarantees a unique path along the mesh boundary.

Properties one and two are handled with the fixmesh.m function that was pro-

vided with the original DistMesh2D package. Property three (traversability) is often

not satisfied upon termination of the mesh generator because a simplification of the

shoreline was not applied. Fragmented patches of triangles may appear near the

shoreline boundary destroying traversability (Fig. 2.5).

A function, calledMake Mesh Boundaries traversable, containing two sub-functions

that are recursively called was developed to iteratively remove patches of elements

that are either disconnected from the major portion of the mesh or are not discon-

nected but prevent traversability (Algorithm 2.6). The former set of o↵ending ele-

ments are defined as being “exterior” disjoint components of the mesh where, starting

from a random seed element in the mesh, the total area of a connected set of elements

(i.e., elements that share an edge) is smaller than a user-defined threshold µco, which

is defined in terms of either the total mesh area-fraction or an absolute area cuto↵

(by default we set µco = 0.25 which is equivalent to a 25% total mesh area-fraction
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(a) (b) (c) (d)

Figure 2.5. Mesh triangulation within the JBAY example before and after
di↵erent stages of the Make Mesh Boundaries Traversable function

enabling mesh traversability. (a) After initial mesh generation (before entry
to function); (b) After deleting o↵ending exterior elements; (c) After
deleting o↵ending interior elements; (d) After exit of function once all
o↵ending exterior and interior elements are deleted and traversability is
obtained. The thick blue line indicates the mesh boundary at each stage,
and red patches indicate the elements that are deleted between stages

(sub-plots).

cuto↵). These patches are identified and removed by the Delete Exterior Elements

sub-function through the use of a breadth-first search (BFS) (Fig. 2.5(a)-(b)).

The latter set of o↵ending elements are defined as being “interior” elements of the

mesh that interfere with the traversability of the mesh boundary path that are not

caught by the Delete Exterior Elements sub-function. The Delete Interior Elements

sub-function deals with identifying and deleting these elements. First, an o↵ending

vertex that has more than two connecting boundary edges is identified. One of the

elements connected to this vertex is chosen to be deleted based on a hierarchy of,

first, triangles that have two boundary edges, and second, triangles with the lowest

quality, qE (Fig. 2.5(b)-(c)). The application of Delete Exterior Elements followed by

the Delete Interior Elements is conducted iteratively until traversability is achieved

(Fig. 2.5(c)-(d)).s

After ensuring traversability, three additional functions, depicted visually in Fig. 2.7,

are applied to the mesh in the following order to improve mesh quality:
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Figure 2.6. Given a Delaunay triangulation composed of vertices p and
vertex-to-element connectivity matrix t, return a p and t that has only two
traversal paths along its boundaries in which disjoint portions of the mesh
that each make up less than a specified area-fraction µco of the pre-cleaned,

initial mesh area (or less than a specified absolute area in km2 when
µco � 1), have been removed
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1. Fix single connec edge elements : elements that share an edge with only one

other element (singly connected elements) poorly approximate geospatial datasets

and are thus removed from the mesh iteratively (Fig. 2.7(a),(d)).

2. bound con int : bounds the vertex-to-vertex connectivity (e.g., Fig. 2.7(b),(e))

in the mesh to a user-defined value in order to improve mesh quality and gra-

dation, and also increase solution accuracy and computational speed [102].

3. direct smoother lur : provides additional improvement to the mesh quality by

moving non-boundary vertices based on a single-step implicit operation [13]

(Fig. 2.7(c),(f)). The application of this function significantly enhances the

statistical distribution of qE (Fig. 2.4).

2.4.2 Multiscale meshing capability

The DistMesh2D algorithm uses memory ine�ciently for the development of mul-

tiscale regional and global meshes of the coastal ocean because it requires a uniform

point spacing to initialize the algorithm. The memory ine�ciency becomes especially

problematic when employing high-resolution elements locally to fully incorporate the

information contained in high-resolution geospatial datasets while using coarser mesh

resolution elsewhere. To reduce the memory overhead when constructing regional

coastal meshes using the DistMesh2D algorithm, the meshgen class has been specifi-

cally developed to allow the user to pass multiple instances of the boundary descrip-

tion (geodata) and mesh size (edgefx ) classes to the meshgen class, an approach that

we term ‘multiscale meshing’. Instances of these classes are defined within polygonal

extents that reflect the available geospatial dataset coverage and can be partially or

fully nested any number of times with largely disparate mesh sizes between nests.

Examples of the multiscale meshing technique are shown in Figs. 2.1 (PRVI) and

2.8 in which the mesh sizes seamlessly transition between the di↵erent DEM extents.
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Figure 2.7. The mesh improvement strategies that are applied in sequence
from left to right after mesh generation, with the red ovals denoting areas
of change in the connectivity along with the function’s name that performs
the operation. The top row indicates various regions in the mesh before the
improvement strategy, and the bottom row after improvement. Panels (a)
and (d) indicate the deletion of elements that share an edge with only one
other element (singly-connected elements); panels (b) and (e) illustrate the
reduction of the vertex-to-vertex connectivity to an upper bound of six
using the algorithms documented in Massey [102]; and panels (c) and (f)
illustrate the single-step implicit smoothing operation [13] that is used to

maximize the overall mesh quality.
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Figure 2.8. An example of the multiscale meshing technique applied to a
set of domains around the New York/Long Island area. The green boxes
are specified by the user. The minimum resolution of the outermost green
box in each panel is di↵erent: (a) it is 1 km, (b) 500 m, and (c) 35 m.
Notice how the regions of overlap gradually transition into each other.

The mesh size function of an edgefx instance is updated in areas of overlap using

the mesh size function of comparatively higher resolution. The mesh size function

of the coarser edgefx instance that was updated is subsequently smoothed using the

limgradStruct.m function.

Only minor modifications to the DistMesh2D algorithm were involved with en-

abling the multiscale meshing capability. The nested domains are evaluated in a loop

inside DistMesh2D in a hierarchical order from comparatively coarser to finer resolu-

tion minimum mesh sizes. The hierarchical evaluation of the force function (Eq. 2.8)

enables vertices of the mesh to move between the nested boxes so long as the outer box

fully encloses the inner box. Since the finest local meshing boundary and mesh size

function take precedent within each nested box, it enables many variable resolution

geospatial datasets to be included into the mesh generation process simultaneously.

In order for the multiscale meshing capability to work, it requires smooth mesh size

transitions between nests. A routine (smooth outer.m) was developed when multiple

edgefx classes are present to ensure a smooth resolution transition occurs between

nested boxes by using a marching method [4] that has been adapted for structured

grids.
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The multiscale meshing capability is similar to the multi-grid nesting technique

employed by ocean models [e.g., 27, 44, 124] but in the finite element framework

without the need for a coupling paradigm. The application of this method allows for

the construction of a single seamless unstructured mesh with mesh size transitions

that are bounded by the user-defined allowable limit, while the resolution is not

significantly altered away from the boundaries of their nests. The multiscale approach

is beneficial over traditional structured multi-grid nesting approaches employed by

ocean models because it avoids issues associated with interpolation and smoothing

at the interfaces between disparate resolution grids that ultimately reduce numerical

accuracy.

In practice, this technique has been used to construct high-resolution (⇡50-m

minmum element size) meshes of the western North Atlantic domain that are sim-

ulated with in Chapter 3 using 18 higher resolution domains nested within a coarse

outer nest that spans the entirery of the western North Atlantic.

2.4.3 Geospatial data preprocessing: geodata class

The geodata class is a pre-processor to the mesh generator. It is used to create an

appropriate mesh boundary description from user supplied input files. The geodata

class also stores the region of the digital elevation model (DEM) that overlaps with

the desired meshing domain e�ciently in memory. This DEM data is used in the

construction and computation of a number of mesh size functions (see edgefx class)

and msh methods. The following section describes the methodologies to prepare the

mesh boundary description.

2.4.3.1 Automatic mesh boundary definition

Since a coastline is often approximated by a series of piecewise linear segments, the

meshing boundary is often unbounded on the ocean-side and may not be a polygon
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(i.e., first point does not equal the last). Thus, the user often has to turn their

segments that represent the coastline into a closed polygon for our meshing algorithm

to work properly. To make this process automatic, we enable the user to specify the

meshing region as a region bounded by a polygon, bbox. Since the mesh domain is

then defined as the intersection of the area enclosed by the bbox and the area enclosed

by the shoreline polygon. The boundary of the meshing domain is implicitly defined

through the use of a signed distance function, d, whereby the distance to the nearest

coastline point is zero [118]. Note that a negative value of the signed distance function

indicates a point within the mesh boundary, and a positive value of the signed distance

function indicates a point outside the mesh boundary.

In our methodology, the shoreline polygon is internally partitioned into mainland

and island polygons (this categorization is defined below). New vertices are added

to the shoreline polygon so that it conforms to the user-requested minimum mesh

resolution (h0) inside the bbox. Vertices are decimated outside bbox to save both

memory and time during the mesh generation process since the calculation of signed

distance function is proportional to the number of shoreline vertices.

1. The segments of shoreline polygon that intersect with bbox are read in to mem-

ory.

2. The segments of shoreline polygon are classified into three types: mainland,

inner, or outer.

(a) The mainland category contains segments that are not totally enclosed

inside the bbox.

(b) The inner (i.e., islands) category contains polygons totally enclosed inside

the bbox.

(c) The outer category is the union of the mainland, inner, and bbox.
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3. New vertices are added on these segments so that no two consecutive vertices

along it are further than h0
2 apart. This is necessary for accurate re-projection

of points that exit the meshing domain during the execution of the DistMesh2D

algorithm [118].

4. All segments are smoothed using a n-point moving average. Simultaneously,

small islands that have an area less than (p ⇤ h0)2 are removed where n and

p are user-specified integers (n = 5, p = 4 by default). Likewise small islands

that intersect the meshing boundary are removed.

As an example, the following steps are applied to a shoreline extracted from

a NCEI Post-Sandy DEM (JBAY in Fig. 2.1) leading to a classification of shoreline

points that is crucial for correct automatic meshing of the complicated coastal domain

it describes without human intervention (Fig. 2.9).

The capability to use geometric contours extracted directly from geospatial datasets

in the mesh generation process without the need for external Geographical Informa-

tion Systems shoreline simplification algorithms or external shoreline datasets im-

proves workflow e�ciency and automation. Further, by using a geometric contour,

the resulting shoreline boundary in the mesh is spatially consistent in its location

with the topo-bathymetric dataset that is subsequently interpolated onto the mesh

vertices. Since many coastal mesh generators rely on the Global Self-consistent Hier-

archical High-resolution Shorelines (GSHHS) dataset [150], the automatic geospatial

data processing algorithms represent a significant step forward towards more com-

prehensive coastal modeling e↵orts. For example, the GSHHS dataset is largely

insu�cient for meshes with a desired resolution finer than 100-m as it often misses

critical connections between water bodies (Fig. 2.10).
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Figure 2.9. Example of boundary treatment in and around New York,
United States; the bounding box of the mesh domain, bbox, is indicated by
the thick dashed black line, the meshing domain is hatched in blue, and the

categorization of land boundary types following the text are indicated
according to the colored lines.
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Figure 2.10. (a) The GSHHS fine (i.e., GSHHS f) shoreline centered
around New York, United States; (b) a shoreline extracted from mosaicing

NCEI Post-Sandy DEM tiles with the GRASS GIS software.
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2.4.3.2 Shoreline pre-processing

The only requirement placed on the polygon S that defines the domain before

mesh generation commences is that the vertex spacing on S must be less than the

minimum element size h0 (Section 2.4.3.1). I have found that ensuring the vertex

spacing so that it never exceeds the minimum element size dividied by two performs

well. An upper limit to the vertex spacing is necessary for the accurate re-projection of

mesh vertices into and out of the meshing domain using the DistMesh2D algorithm.

To ensure this is the case automatically, a vertex cluster reduction algorithm was

programmed into the geodata class constructor. In vertex cluster reduction, successive

vertices are collapsed into each other to simplify the polygon. Vertex cluster reduction

is a brute-force algorithm for polyline simplification.

For this algorithm, a vertex on the polygon is discarded when its distance from

a prior initial vertex is less than some minimum tolerance � > 0. Specifically, after

fixing an initial vertex V0, successive vertexes Vi are tested for closeness and rejected

if they are less than � away from V0. But, when a vertex is found that is further away

than �, then it is accepted as part of the new simplified polyline, and it also becomes

the new initial vertex for further simplification of the polyline. Thus, the resulting

edge segments between accepted vertices are larger than the delta tolerance.

In the context of the multiscale meshing technique with DistMesh2D, the vertex

clustering improves the e�ciency of the mesh generation by accelerating the cal-

culation of the signed distance function. From Section 2.4.1, the signed distance

function relies on a K-d tree to compute the shortest distance from a vertex to the

nearest shoreline boundary vertex and has an average computational complexity of

M ⇤O(log(N)) where M is the number of vertices contained in the K-d tree and N is

the amount of search queries [7, 106]. Thus, the vertex reduction clustering outside of

the region of focus becomes highly simplified containing few vertices which altogether

reduces the computational expense of the K-d tree calculation by a constant.
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Figure 2.11. (a) A high-resolution shoreline dataset that is not a polygon
and a bounding box to be meshed dotted black lines. (b) The result of the
flood-fill operation that converts the polyline into a closed polygon. In
panel (a), the red boundary is the mainland and the green boundaries

represent island features that are closed by definition.

In the case that the shoreline is not a polygon, an ability to turn the shoreline

into a polygon is progamed into the geodata class as a flood-fill algorithm that I

term “shoreline repair”. This algorithm is adapted from [57] The user must select a

seed location that lies in the intersection of the unclosed shoreline polyline and the

bounding box defining the desired meshing domain (Figure 2.11(a)). A constrained

Delunay triangulation (CDT) is created of the shoreline and the edges of the bounding

box. A CDT di↵ers from a Delaunay triangulation in that a set of edges are fixed in

the computational domain and thus do not move and may be locally non-Delaunay.

From the seed location, the algorithm traverses the CDT’s edges using a breadth-

first search and saves all the vistied boundary edges. Once all the visited boundary

edges have been stored and there are no more left to visit, the edges are ordered in

a walking-order (i.e., counter-clockwise or clockwise) and the a polygon representing

the domain is returned to the user (Figure 2.11(b)).
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2.4.3.3 Meshing in projected spaces

Mesh resolution sizes need to be accurately controlled according to the mesh size

function. In order to accurately enforce these constraints on the curved surface of

the Earth, a projection from the spherical geometry of the Earth to a planar one

IR3
! IR2 is necessary. In this software, the mesh is generated and output in the

World Geographic Coordinate System (WGS84). For the formation of some mesh

size functions that rely on bathymetric gradients and distances, we use a simple

relationship between WGS84 degrees and planar meters to calculate the underlying

grid spacing:

�
⇤
lon = �lon

⇡RE

180
cos�, �

⇤
lat = �lat

⇡RE

180
(2.16)

where �lon and �lat define the DEM resolution in WGS84 degrees between merid-

ians and parallels, respectively, RE is the mean radius of the Earth (⇡ 6378 km),

�
⇤
lon and �

⇤
lat are the distances between meridians and parallels in meters, and � is

the latitude in radians. To enforce mesh resolution constraints, we use the Haversine

formula to convert between WGS84 and meters. An assumption is made that the

length in geographic degrees forms a horizontal (i.e., latitude parallel) edge starting

at the point it is defined at. The distance between the start and end point of this

edge are converted to Great Circle distances using the Haversine method and then,

later, we invert the Haversine formula and solve for WGS84 degrees by assuming that

the distance between latitudes is zero:

hd = 2arcsin

✓
sec� sin

✓
h
⇤

2RE

◆◆
(2.17)

where h⇤ is the length of the edge in meters, and hd is the length of the edge in WGS84

degrees. The assumption that the edgelength extrudes along a latitude parallel is

reasonable in practice because the mesh size function constraints matter mostly in
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Figure 2.12. Mesh resolution sizes in a global mesh that was created using
the OceanMesh2D software library in a handful of hours automatically.

areas of relatively high mesh refinement and, in these locations, the variation in � is

small.

In V2.0 of the OceanMesh library, the m map library [116] was integrated directly

into the software. The m map libary enables meshing in an arbitrary projected space

ensuring the user-defined mesh size constraints are accurately enforced on the spher-

ical geoemtry of the Earth. The capability to mesh in projected spaces is enabled

by calculating the signed distance function (Eq. 2.10) while projecting the meshing

boundaries, and mesh size functions into the desired projected space using m map.

The ability build meshes in a projected space (e.g.., stereographic) supports global

meshing where the boundaries are wrapped/periodic in space by construction (Fig-

ure 2.12).

For example, in Figure 2.12 the mesh boundary when centered on the South

Pole becomes Anarctica and thus the �180� meridian is not a discontinuity in the

stereographic projected space. When the mesh is projected back into a geographic

coordinate system, the elements appear highly anistropic near the Poles but remain

49



isotropic in the projected space. Depending on the application, 18 varous projected

spaces can be utilized, including Universal Tranverse Mercator zones for a precise

definition of length in small domains.

2.4.4 Automatic mesh size function: edgefx class

The careful placement of mesh resolution is critical to create meshes that lead to

accurate but e�cient simulations. There are a number of heuristics used to design

unstructured meshes for shallow water flow applications. A review of some common

resolution heuristics utilized in coastal ocean modeling can be found in Greenberg

et al. [69]. We have considered a variety of constraints involved in the formation of

the mesh size functions by integrating and adapting past work on the topic. The

various mesh size functions are detailed in this section.

Mesh resolution is distributed in the domain according to a mesh size function.

The mesh size functions are constructed on a structured grid that relates every point

in the meshing domain to a desired mesh size h, or more precisely, a triangular

edgelength (hence the name edgefx ). There are many techniques to form mesh size

functions that vary principally around the methodology to form the background grid

on which the mesh sizes are calculated [4]. For example, the simplest approach is to

use a Cartesian or structured grid. Defining the mesh size function on a structured

grid has advantages over an unstructured one [41, 57] in relation to computational ef-

ficiency when storing, querying, interpolating, and performing calculations. Further,

bathymetric data is often defined on structured grids (DEMs), and in these cases,

computing the mesh size function directly on the same grid can minimize seabed

interpolation error for the mesh size function calculation. Given these reasons, I cal-

culate our mesh size functions on Cartesian grids defined in geographical coordinates

(i.e., WGS84). A major drawback to this approach is that the entire domain must

be uniformly refined which becomes particularly severe for relatively large meshing
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domains. This impacts the scalability of the subsequent mesh generation process

for regional and global coastal mesh generation, but the multiscale mesh capability

(Sect. 2.4.2) alleviates this problem by localizing the zones of high resolution.

Each individual mesh size function is based on either shoreline data and/or the

bathymetric datasets that were passed to the edgefx class constructor. Currently,

the software supports a variety of mesh size functions that are used in the ocean

modeling community: wavelength-to-grid-size [98, 152], topographic length scale [69,

89], Euclidean distance from the shoreline [118], approximate feature size of the

shoreline [4, 87], thalweg/polyline [75], and Courant-Friedrichs-Lewey (CFL)-limiting

[17]. Each mesh size function can either be incorporated or omitted based on the

user’s requirements. The mesh size function is graded using a marching algorithm

[4] to ensure that the triangle-to-triangle change in edgelength is bounded below a

user-defined percent, ↵g.

In Chapter 3, I illustrate the e↵ect these mesh size functions have on simulated

results in practice, documenting the considerations of the mesh resolution selection

and design on the solution of tides in a relistic and modern problem configuration.

2.4.4.1 Distance and feature size

A high degree of refinement is often necessary near the shoreline boundary to

capture its geometric complexity. If mesh resolution is poorly distributed, critical

conveyances may be missed leading to larger scale errors in the nearshore circulation

[69]. Thus, a mesh size function that is equal to a user-defined minimum mesh size

h0 along the shoreline boundary, growing as a linear function of the signed distance

d from it may be appropriate:

hdis = h0� ↵dd (2.18)
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where ↵d is the percent change of mesh size with distance from the shoreline boundary.

Eq. (2.18) is what we call the distance mesh size function and was originally presented

in the DistMesh2D algorithm [118].

One major drawback of the distance mesh size function is that the minimum mesh

size will be placed even along straight stretches of shoreline. If the distance mesh size

function generates too many vertices, a feature mesh size function that places reso-

lution according to the geometric width of the shoreline should instead be employed

[41, 87]. In this function, the feature size (e.g., the width of channels/tributaries, and

the radius of curvature of the shoreline) along the coast is estimated by computing

distances to the medial axis of the shoreline geometry. Here we have implemented an

approximate medial axis method closely following Koko [87]. This involves finding

local extrema in the gradient of the d, which in practice, amounts to defining a medial

point as a location where ||rd|| < 0.9 and d < 0 [87]. Sometimes due to the config-

uration of the mesh size function grid juxtaposed on the shoreline geometry, medial

points inside small channels may be lost. These medial points can be recovered by

classifying mesh size function grid points as medial points if both adjacent neighbors

(in the north-south or east-west directions) are outside of the domain (i.e., signed

distance is positive) but the mesh size function point under question is within the

domain (i.e., signed distance is negative). Once the medial points are computed, the

local feature size hlfs is calculated as:

hlfs =
2(dMA � d)

↵R
(2.19)

where the numerator is an estimate of the width W of the shoreline, ↵R is the user

specified number of desired elements per local feature size (commonly 2  ↵R  6),

and dMA is the absolute distance to the nearest medial point. Since the medial axis

is an approximation, the identification of the full set of medial points depends on the

horizontal resolution of the mesh size function. This implies that the feature mesh
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size calculation will work best when computed on a structured grid of resolution

similar or finer than the horizontal resolution of the supplied geophysical datasets.

To demonstrate the e�cacy of the feature mesh size function, we use a 1/9 arc

second (⇠3-m) topo-bathy DEM. to generate an approximate 10-m minimum element

size mesh of Jamaica Bay in New York, United States (JBAY; Fig. 2.1), with ↵R = 3.

Relatively coarse resolution is placed along linear regions of the sand bar, while the

dark patches indicate where higher resolution is automatically placed around points

of high curvature in the coastline and through channels. For example, two closeups

are shown where higher resolution is placed along a narrow constriction and around

perpendicular coastal groins along a beach.

A modification to Equation 2.19 can also be utilized by making the denominator

↵R a function of the shoreline width, i.e., R(W ). In practice, I’ve found that the

following function is suitable for meshing complicated shoreline geometries accurately:

↵R(W ) = min(ceil(
W

h0
),maxR) (2.20)

where ceil denotes the ceiling operator that rounds up to the nearest integer, the

minimum element size is represented as h0, and maxR is a user-defined maximum

bound for the number of elements per shoreline geometric width (W). A reasonable

value R is 5 to 7, which enables more elements in wider geometries and fewer in

narrower geometries.

2.4.4.2 Wavelength-to-grid size

In shallow water theory, the wave celerity, and hence the wavelength �, is pro-

portional to the square-root of the depth of the water column. This relationship

indicates that more mesh resolution at shallower depths is required to resolve waves

that are shorter than those in deep water. With this considered, a mesh size function
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hwl that ensures a certain number of elements are present per wavelength (usually of

the M2 dominant semi-diurnal tidal species) can be deduced:

hwl =
�M2

↵wl
(2.21)

hwl =
TM2

↵wl

p
gb (2.22)

where �M2 and TM2 are the wavelength and period (⇡12.42 hours) of the M2 tidal

wave, g is the acceleration due to Earth’s gravity, b is the bathymetric depth, and

↵wl is the user specified number of elements chosen to resolve the wavelength. If the

M2 wavelength is su�ciently captured, the diurnal species will also be su�ciently

resolved since their wavelengths are approximately twice as large as the M2. In

general, the wavelength parameter ↵wl is set to a value somewhere between 25 and

100 [90, 152].

2.4.4.3 Topographic length scale

The distance, feature size, and/or wavelength mesh size functions can lead to

coarse mesh resolution in deeper waters that under resolve and smooth over the

sharp topographic gradients that characterize the continental shelf break. These slope

features can be important for coastal ocean models in order to capture dissipative

e↵ects driven by the internal tides, transmissional reflection at the shelf break that

control the astronomical tides, and trapped shelf waves [79]. The scaling of the slope

parameter, commonly called the topographic length scale, is usually represented by

the following:

hslp =
2⇡

↵slp

b

|rb|
(2.23)

where 2⇡/↵slp is the number of elements that resolve the topographic slope, and

rb is the gradient of the bathymetry evaluated on a structured grid of horizontal
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(a)

(b)

[m]

Figure 2.13. Mesh resolution (defined as the local element circumradius
[m]) in the PRVI example (see Table 3.1) around the Puerto Rico and U.S.
Virgin Island inset region, with (a) and without (b) the Rossby radius slope
filter applied. The ‘thermal’ color palette from cmocean [147] is used in this

figure.

resolution h0. The 2⇡ factor is a convention introduced by Lyard et al. [99] so that

↵slp can be set to a value similar in magnitude to ↵wl, e.g., around 10-30.

Typically the gradient of the bathymetry often contains a high degree of noise,

which results in high mesh refinement with the application of hslp despite the fact

that small features have marginal e↵ects on shallow water flow, particularly in deep

water [91]. We would like to filter bathymetric features that are not relevant to

the underlying shallow water processes, like the astronomical tides. Therefore, I

proposed to low-pass filter the bathymetry before calculating the gradient.The filter

cuto↵ length is based on an estimate of the local Rossby radius of deformation:
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LR =

p
gb

f
(2.24)

where f is the Coriolis force. By local we mean that we discretely bin values of LR

in the meshing domain and apply a low-pass filter to those binned grid points with a

cuto↵ set to LR at the bin midpoint. For this approach to work correctly, partitioning

the meshing domain is critical because meshing domain often spans large regions of

latitude with highly varying f . Here, the PRVI example (Fig. 2.1 and Table 3.1) is

used to demonstrate the e↵ect of the Rossby radius slope filter (Fig. 2.13). The mesh

with the Rossby radius slope filter focuses mesh resolution at large and relatively

shallow features such as the continental shelf break avoiding the placement of fine

resolution over deep and small scale features that are not comparable to LR. As a

result, the mesh with the filtered seabed has 27% fewer vertices in the illustrated

region. It is di�cult to estimate the cost-savings attributed to the low-pass filter

proposed in this section as it depends largely on the geometry of the domain and

bathymetric datasets used.

2.4.4.4 Channel thalwegs/polylines

Closer to the shoreline, the width of the nearshore geometry through which wa-

ter must flow eventually becomes the dominant length scale instead of LR. Thus,

constraints imposed by continuity normally become more important than dynamic

balances in determining spatial scales in estuaries [91]. Following this logic, the rep-

resentation of the cross-sectional area of the channel that connects the ocean to the

estuary is important in order to simulate an accurate exchange of water.

The predominant conveyance through a watercourse is often approximated by a

series of neighboring points that connect local minimums in bathymetric depth. These

locations are referred to collectively as a thalweg and are represented as polylines in
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the GIS framework. The level of mesh refinement near and around the thalweg can

a↵ect the bathymetric representation in the mesh through aliasing local minimums

in bathymetric depth. Often the associated length scale of these features is too small

to e�ciently resolve through the other mesh size functions. Instead we propose a

mesh size function to locally enhance mesh refinement around thalwegs.

Thalwegs can be located by thresholding upslope area [112] in a DEM with GIS

software such as GRASS. One di�culty with thresholding upslope area to identify

submerged channels is that it may produce spurious non-physical channel networks,

especially in areas of flat bathymetry.

This mesh size function treats the thalwegs as a set of connected vertices that

form polylines and operates on the polylines that intersect with the meshing domain.

The mesh resolution is distributed as follows:

1. A circular region in the mesh size function is formed on each thalweg point with

a diameter, dia, equal to:

dia = 2b tan(✓) (2.25)

where ✓ is the angle of reslope.

2. In each circular region, the mesh size function is assigned resolution by

hch =
b

↵ch
(2.26)

This assumes the thalweg has a cross-sectional area that resembles a v-shape with

a bank angle of ✓ (which is set to 60� by default) and that the stencil becomes larger

as b increases (Fig. 2.14).

As the water column deepens, the horizontal length scale greatly enlarges, which

implies that the dynamical e↵ects from small-scale features like thalwegs should

weaken. This dynamic is qualitatively captured through Eq. (2.25) by the enlarge-
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Thalweg

Planar view of channel cone

Grid points used in channel
mesh size function

b

free 
surface 

 Grid points excluded from
channel mesh size function

Figure 2.14. A schematic illustrating the channel mesh size function
implementation. The thalweg (deepest part of a channel) is depicted by the
maroon line. Mesh size function grid points (defined at the free surface
vertical contour) that fall within the channel cones (centered along the
thalweg with an assumed bank angle of ✓ from the vertical) used to
estimate the width of the channel are set to follow equation 2.26.

58



Figure 2.15. Panels (a) and (c) show the bathymetry and mesh
connectivity in the GBAY example (Fig. 2.1 and Table 3.1) created

without the thalweg mesh size function enabled; panels (b) and (d) are
with the thalweg mesh size function enabled. The ‘deep’ color palette from

cmocean [147] is used in palettes (a) and (b).

ment of the thalweg region in the mesh size function as the water depth increases.

Additionally, the quotient ↵ch in Eq. (2.26) alters how the resolution scales with

bathymetric depth to further reflect the fact that the horizontal length scale tends to

grow as the water becomes substantially deeper, thus reducing the resolution around

thalwegs.

As an example of this mesh size function, a mesh is built in and around Galveston

Bay Houston (GBAY; Fig. 2.1 and Table 3.1). In this example, we have provided the

thalweg points by thresholding the Galveston DEM (Fig. 2.1) with an upslope area of

10,000 cells using GRASS GIS. Visually, the mesh generated using the channel mesh
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size function clearly captures the bathymetric feature of the Houston Ship Channel to

a higher degree of accuracy (Fig. 2.15). Without the use of this mesh size function,

the model design would be forced to use an extremely high degree of refinement

everywhere to capture the Houston Ship Channel and its adjacent features, or to

hand-edit the mesh resolution, which, in both cases, are ine�cient methodologies.

2.4.4.5 Finalizing the mesh size function

The final mesh size function, h, is determined by applying the minimum function

to the set of individual local mesh size functions, i.e.,

h = min [(hdis or hlfs), hwl, hslp, hch] (2.27)

Note that it is possible to operate on any given subset of mesh size functions. Fol-

lowing this h is further refined based on mesh size transition bounds (Sect.2.4.4.6),

Courant-Friedrichs-Lewey limiting (Sect.2.4.4.7), and global user-defined maximum

(hmax) and minimum (h0) mesh size bounds.

2.4.4.6 Mesh size transitions (gradation)

It is necessary to ensure a size smoothness limit ↵g such that for any two adjacent

vertices xi, xj connected by an edge, the local increase in mesh size is bounded above

such that:

h(xj)  h(xi) + ↵g||xi � xj || (2.28)

The mesh size gradation is enforced with the fast marching method that was

mentioned in Sect. 2.4.2 and is operated on the mesh size function. A smoothness

criteria is essential to produce a mesh that can simulate physical processes with a

practical time step as sharp gradients in mesh resolution typically lead to triangles

with highly skewed angles that results in low inevitably resulting in poor numerical
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accuracy [138]. In general, a smoother edgelength function is congruent with a higher

overall triangle quality but with more triangles in the mesh. It is important to note

that the rate of mesh resolution increase is bounded above by the grade; therefore, if

the distance parameter in Eq. (2.18) is set to a value lower than the grade (↵d < ↵g),

then grading should have no e↵ect on the mesh size function. Note that since we

are grading the mesh size function and not the mesh, there may be some patches of

elements in the triangulation that may contain a gradation larger than the threshold.

However, given a su�cient number of meshing iteraations and termination of the

mesh generator, the mesh size function will match that of the distribution of vertices

and thus approxiately ensure the gradation is bounded above by the size limit ↵g.

Here we demonstrate the relative e↵ects of the distance and feature mesh size

functions and their interaction with the grade. To illustrate this mesh size function,

we built a mesh over an estuary-like geometry with distance (↵d = 0.15 and ↵d = 0.35)

and feature (↵R = 3 and ↵R = 6) mesh size functions, each using two di↵erent

gradation bounds (↵g = 0.15 and ↵g = 0.35) (Fig. 2.16). The distance mesh size

function focuses resolution on the mesh boundary, which is often not necessary to

resolve areas that are geometrically simple. Further, the use of a distance mesh size

function often results in comparatively larger triangles in the center of the geometry;

especially with a relatively high grade (i.e., 35%; Fig. 2.16(d)).

In shallow estuaries, this can be undesirable as the bathymetric representation of

high conveyance channels in the center of the estuary will be inaccurate, aliasing the

transported mass and energy. In contrast, the feature mesh size function places a

uniform number of triangles across the widest axis of the feature (Fig. 2.16(e)-(f)).

It focuses mesh resolution on regions that are narrow and/or where the shoreline

has high curvature. The net result is a comparatively smaller number of vertices

than the distance mesh size function (for ↵R < 20 in this example). Depending

on the selection of ↵R in the local feature size equation Eq. (2.19), the size of the
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Figure 2.16. Depiction of mesh resolution interactions between the grade
(↵g), distance (DIS), and feature (FS) mesh size functions. Panels (a)-(c)
depict the resolution with a grade equal to 15% (↵g = 0.15), panels (d)-(f)
with a grade equal to 35% (↵g = 0.35). The first column depicts how mesh
resolution is distributed with a distance mesh size function and the second
and third columns show how the mesh size varies with the feature mesh
size function with ↵R equal to 3 and 6, respectively. In the title of each

panel, the number of vertices n in the triangulation is shown.

mesh resolution in the center of the estuary can be bounded even when using a

relatively high mesh grade (↵g > 0.25). This is advantageous because a higher grade

can dramatically lower the overall vertex count. Conversely, a relatively low grade

(↵g < 0.20) can hinder the feature mesh size function from expanding e�ciently, and

may be somewhat counter-productive to its purpose.

2.4.4.7 Courant-Friedrichs-Lewey (CFL)-limiting

The computational expense of a computational model and associated code is

significantly a↵ected by the time step that must be used to ensure stability and ac-

curacy. For models that use explicit time stepping schemes, a necessary condition for

numerical stability is determined by the Courant-Friedrichs-Lewey (CFL) condition.

Although this is not a su�cient condition, it is a practical way to gauge the success
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of a new mesh. The CFL condition states that the Courant number (Cr) must be

less than or equal to 1. Stricter conditions may be relevant for di↵erent numerical

schemes and due to nonlinearities in the governing equations [28]. Additionally, the

accuracy of a numerical scheme is impacted by the Cr as high values tend to give

poorer accuracy even in implicit solvers. For the application of solving the shallow

water equations the Cr can be estimated and bounded in the mesh [17]. We define

an estimate of Cr at the vertices of the mesh by adding the shallow water wave speed

with an estimate of the anticipated flow speed:

Cr =
(u+

p
gH)�t

�X
(2.29)

where u is the magnitude of the flow, g is the acceleration due to gravity, H is the

total water depth, �t is the time step, and �X is the element size or the shortest

connected edge to each vertex. Since the wave speed is a function of depth and �X

is equivalent to the mesh size, h, the user can estimate the CFL condition a priori

for a given �t. Note that to obtain this a priori estimate of Cr in Eq. (2.29), we set

H ⇡ b, and approximate the flow speed with the long wave linear orbital velocity, i.e.,

u ⇡ ⌘

p
g/b, where ⌘ is the wave amplitude which we set to 1 m by default. Applying

these approximations and rearranging gives the following CFL-limiting condition on

the mesh size:

h �
(⌘
p
g/b+

p
gb)�t

Cr
(2.30)

where b is set to a minimum of 1 m to allow for the CFL condition to be satisfied

overland in the case inundation were to occur.

Thus, the user can specify a value of �t to bound the mesh resolution based

on some value of Cr < 1. The aim of CFL-limiting is to help facilitate a mesh to

be simulated with a certain time step when using explicit time stepping numerical
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models. However, this often comes with a loss of mesh resolution that may be critical

for resolving important conveyances, so the user must consider reasonable values of�t

based on the minimum edgelength. To avoid this choice, we have also implemented an

option that automatically selects a suitable �t that satisfies the condition Eq. (2.30)

for the hdis or hlfs (whichever is induced) mesh size functions. The purpose of this is

to preserve the nearshore resolution while applying the CFL-limiting to other mesh

size functions that may give higher refinement o↵shore.

To demonstrate the CFL-limiting option, we return to the JBAY example (Fig. 2.1

and Table 3.1), generated using the feature mesh size function. In one rendition of

the mesh, no CFL-limiting is used (TwoCFL), in another rendition, CFL-limiting with

�t = 2 s (TwCFL) is invoked. In the generation of TwCLF , the mesh size function is

conservatively bounded by Cr = 0.5 to allow a bu↵er for the e↵ects of nonlineari-

ties, bathymetric interpolation, and mesh smoothing. After the mesh is generated,

the NCEI Post-Sandy DEM is interpolated onto each vertex using a cell-averaging

approach (see interp method in Sect. 2.4.5, and the resulting CFL is calculated by

Eq. (2.29) with �t = 2 s. The use of the CFL-limiter acts to shift the distribution of

Cr to smaller values (Fig. 2.17). The maximum Cr decreases from 3.64 to 0.96 and

the mean Cr shifts from 0.68 to 0.36. In the mesh with the CFL-limiting, there are

no vertices that violate the CFL condition as compared to 10,492 in the mesh without

it. CFL-limiting thus reduces the number of vertices by locally coarsening h in fact

(TwCFL has 45.6% fewer vertices than TwoCFL). Again, the user must be careful when

selecting �t as CFL-limiting may lead to choke points in small channels nearshore

which are generally the first areas that violate the CFL (Fig. 2.18). Depending on

the application this may or may not be tolerable.

Although the above example demonstrates that the Cr of all vertices is reduced

to under 1 when using the CFL-limiting mesh size function, the maximum Cr is still

0.96 for �t = 2 s, which may be too close to the theoretical condition to simulate

64



Figure 2.17. Panel (a) illustrates the e↵ect of CFL-limiting on the Courant
number Cr when constructing the JBAY example (Fig. 2.1 and Table 3.1)
and (b) without it. The colored bars indicate the vertices with Cr > 0.5

and are shown to assist in the comparison of histograms.
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Figure 2.18. Selected closeup regions in Jamaica Bay, New York (left (a)
and (c): West Pond, Queens; right (b) and (d): Old Howard Beach,
Queens) of the mesh connectivity built with the JBAY example script

(Fig. 2.1 and Table 3.1). Top panels (a) and (b) show the mesh
connectivity without invoking the CFL-limiter, and the bottom panels (c)

and (d) show it when using the CFL-limiting option with �t = 2 s.
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without instabilities. Based on our experience we need to impose a stricter CFL

condition such as Cr < 0.5 to ensure numerical stability, accuracy, and to minimize

numerical artifacts. To ensure that this more conservative condition is fully satisfied,

we propose the CheckTimestep post-processing function (Algorithm 1). This func-

tion iteratively deletes vertices in the mesh associated with edges that violate the

CFL. With each deletion, the vertices on the outer fan containing all the connected

elements are smoothed using the Laplacian operator. The algorithm relies on MAT-

LAB’s implementation of the Bowyer-Watson incremental Delaunay triangulation to

preserve the mesh connectivity outside of the modification patch. For example, in

the JBAY example with CFL-limiting, CheckTimestep converged after 5 iterations

resulting in a mesh with approximately 2,240 less vertices but one that fully satisfied

Cr < 0.5 everywhere for �t = 2 s. In addition to ensuring the CFL condition is fully

met, CheckTimestep in practice is often used to explore how the mesh would have to

be modified in order to achieve a stable simulation for a particular �t.

1: Function (p,t) = CheckTimestep(p, t , b,�t)
2: Form nearest neighbor bathymetric interpolant with p, t, and b.
3: Calculate Cr at all vertices using Eq. (2.29) given b, �t, and the shortest

connected edge to the vertex.
4: If Cr  0.5 8 p, then exit.
5: Otherwise, determine point set pv with Cr > 0.5
6: Incrementally delete pv from t using Bowyer-Watson algorithm.
7: Apply Laplacian operator to the patch around each pv containing the connected

triangles.
8: Re-interpolate b onto p using nearest-neighbor interpolant and proceed back to

3.
Algorithm 1: Incrementally adapts a triangulation of points p and connectivity
matrix t with bathymetric data b defined at p to a given timestep �t in seconds
through vertex decimation.
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2.4.5 Data container: msh class

To store the triangulation and related files, the msh data storage class con-

tains triangulation-related attributes and support for solver-specific input file enables

option-hierarchy, organizes the numerous associated data files in one place, and sim-

plifies the interaction with the underlying data by creating a set of standardized

methods. Upon termination of the mesh generator, a msh class object containing

the triangulation is returned and can be saved e�ciently to hard disk as a MATLAB

.mat file. While the underlying purpose of the msh class is to store the mesh data,

the OOP framework enables specific methods to be associated with it. This enables

the msh class to act as an intermediary between the numerical solver and the user to

assist the creation of solver-specific files and perform common data-driven operations

on the mesh.

A substantial e↵ort is often required after the triangulation is constructed to

enable simulation with a coastal ocean solver such as ADCIRC, FVCOM, SELFE, or

SCHISM. For example, the mesh often needs to be visualized and quality checked,

boundary conditions must be specified, and seabed topography must be interpolated

onto the mesh vertices (Fig. 2.19). Rather than have each user independently write

their own methods to accomplish these tasks, we believe it to be more advantageous

to place these static or dynamic methods inside the msh class that can be edited by

everyone using a version control software.

Figure 2.19 illustrates a few of the key methods associated with the msh class

(see the user guide for a complete list) that I have implemented, such as the visu-

alization of mesh triangulation, resolution, seabed topography, and boundary types.

Further, a standardized method for interpolating seabed topography, which employs

a generalized cell-averaging approach by default, has been developed. The method

can also be used as a wrapper to the built-in MATLAB griddedInterpolant function

with nearest, linear, and various higher-order interpolation methods. Comparison of
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Figure 2.19. Illustration of key msh methods: plot can be used to visualize
mesh resolution (top-left), mesh triangulation and boundary types

(top-right), and seabed topography (bottom row); interp interpolates
seabed topography onto the mesh using cell-averaging or built-in
griddedInterpolant methods (bottom row); makens classifies mesh

boundary vertices into land and open ocean types automatically using the
native geodata class (top-right).
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the mesh seabed topography using cell-averaging and linear interpolation methods

is shown along the bottom row in Fig. 2.19. Also included is a msh method to au-

tomatically classify mesh boundary vertices into open ocean, enclosed islands, and

mainland types based on the native geodata class (top-right in Fig. 2.19).

2.4.5.1 Automatic merging

An approach to merge two triangulations to automatically produce one seamless

unstructured mesh was developed and an example is illustrated in Figure 2.20. In

this approach, an outer mesh is first developed that encompasses the computational

domain of the inset and uses comparatively larger sized elements than the inset.

Subsequently, an inset mesh is developed around the region of focus that contains

smaller sized elements to more accurately represent the physics of the problem and

shoreline and seabed features.

The merging algorithm works by first creating polygonal boundaries of the inset

and outer meshes. The polygonal boundaries are used to determine the area of

overlap in the outer mesh with the inset by using a polygonal intersection algorithm.

The area of overlap is decimated from the outer mesh. After the removal of vertices

and elements from the outer mesh, the outer mesh is cleaned with the application

of Figure 2.5 to remove disconnected patches of elements that may exist along the

boundary. Following this, the inset triangulation is added to the outer triangulation

using the incremental Bowyer-Watson algorithm [26] while deleting new elements

that form which have low (less than 4) vertex-to-vertex connectivity. After this, a

pruning stage occurs which removes triangles with centroids that aren’t in the original

outer meshes polygonal boundary or aren’t in the inset meshes polygonal boundary.

Finally, the merged triangulation is cleaned and checked for validility and conformity

by applying the same sequence of methods that occur at the end of mesh generation

(see Figure 2.7).
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Figure 2.20. An example of automatically merging a regional higher
resolution triangulation into a coarser global shell.

The ability to seamlessly merge a higher resolution inset into a outer, coarser

mesh that encompasses a larger study region (i.e., the globe) enables new on-demand

modeling approaches to be pursued. For instance, a global modeling system can be

developed with a minimum mesh resolution of 1 to 4 km and tested for stability and

accuracy. As a severe storm develops somewhere in the globe, the region of focus can

be narrowed and a smaller high-resolution inset mesh can be quickly developed and

automatically merged using the software.

2.4.5.2 Meshing the floodplain

A two-step approach was developed to mesh the floodplain (Figure 2.21). First,

a mesh of the oceanside portion of the domain is created. The boundary edges of the

oceanside mesh are extracted and stored. A secondary mesh boundary is selected for

the same domain but instead extending overland (e.g., 10 or 15 m geometric contour

71



above LMSL). In the subsequent operation, the user passes the oceanside’s boundary

edges and points to both the edgefx and meshgen class constructors through a name

value pair [see the user guide 129]. The software ensures that either the feature

size or distance-based element sizing routines are consistent between the transition

zone of the oceanside of the domain onto the floodplain. The points connecting the

edges that represent the oceanside’s mesh boundary are constrained or “fixed” in the

final triangulation that includes both the oceanside and overland component of the

domain (Figure 2.21(b)). The edges and points that are fixed ensure two things that

are desirable for coastal modeling: i) that the minimum depth on the boundary of

the oceanside mesh can be made su�ciently deep to convey flow through complicated

and narrow channelized geometries; especially those that are on the order of the

minimum mesh sizes, and ii) that logic-based wetting/drying algorithms produce

wetting and drying in syncrhonization (i.e, preventing a jagged form of the discrete

wet/dry interface to develop during the simulation). Condition ii) is important in

channelized sections of the estuaries that have strong along-channel orientated flows

because in these cases, if one element becomes dried, the dry element acts as a barrier

often leading to both numerical instabilities and incorrect circulations.

This approach to meshing the floodplain also creates a natural division in the

model development process enabling the modeler to first assess the numerical stability

and the accuracy of the tidal problem before adding on the computational expense of

representing the floodplain. At the completion of step 1, the modeler can determine

if their mesh size options and shoreline boundary description are capable of meeting

their accuracy and performance standards.

2.5 Performance of library

The total and component-based wall-clock times for generating each of the three

examples presented in this study is shown in Table 2.2. Overall, the small exam-
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Figure 2.21. Panel (a) documents the steps involved with the two-step
approach to automatically mesh the floodplain. Panel (b) shows the
oceanside portion of the doman with the boundary edges and points

indicated in red. Panel (c) shows the second step in the floodplain meshing
algorithm that incorporates the oceanside’s boundary as fixed points and

edges to mesh to a higher elevation geometric countour. Panel (d)
illustrates the interpolated seabed topogrpahy (using a cell-averaged
approach) onto the mesh vertices with (left) and without (right)

consideration of lowering the depth along the fixed points to ensure they
remain wetted that represent the shoreline geometry.
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ples (JBAY and GBAY) complete in under 2 minutes, and the large PRVI example

takes approximately 45 minutes. Consistently for all examples vertex relocation con-

sumes slightly more time than Delaunay triangulation, and the mesh cleaning (post-

processing improvement strategies) accounts for approximately 6% of the total time.

The relative balance between mesh generation and pre-processing times depends on

the resolution of the shoreline and the size of the meshing domain. For example,

in the small domain problems (JBAY and GBAY), the pre-processing time makes

up roughly a quarter of the total time. In contrast, in the PRVI example which

meshes most of the north western Atlantic ocean using four separate geodata and

edgefx classes, the pre-processing time accounts for 64% of the total time. Therefore,

while it is likely possible to speed-up the mesh generation process through e.g., par-

allel Deluanay triangulation and/or di↵erent approaches to the initial point rejection

in the DistMesh2D algorithm, for large and complex meshes intelligent use of the

multiscale meshing approach combined with parallelization of the construction of the

individual edgefx and geodata classes is likely to result in the greatest speedup.

2.6 Discussion and conclusions

A self-contained model development toolkit to automate the generation of two-

dimensional (2D) triangular unstructured meshes for coastal ocean models was de-

veloped. The overarching goal of the software is to reduce the complexity and hours

spent constructing real-world unstructured meshes to the degree that it allows one

to more carefully and systemically study the impact on the coastal circulation. This

is achieved through a standardized scripted workflow comprising pre- and post- pro-

cessing steps of geospatial datasets and mesh properties, which are performed by

four dedicated classes. Each class was designed to simplify the necessary pre- and

post- processing procedures for mesh generation leading to a self-contained model

development tool. Whleis focused on producing standardized workflows to automate
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and improve the e�ciency of coastal mesh generation workflows. While the script-

ing based approach used to generate meshes promotes automation and approximate

reproducibility, the pointers contained within the script do not adequately describe

provenance attribution of the geospatial datasets and computing environment used.

In the future, employing formal Research Data Management practices in the con-

text of geophysical mesh generation [8, 31] into OceanMesh2D would be beneficial to

heighten reprodubility.

For coastal mesh generation, a key advantage of using the DistMesh2D smoothing-

based algorithm over Delaunay refinement and/or Frontal Delaunay mesh generation

algorithms is that the boundary is implicitly defined using a signed distance func-

tion. The implicit definition of the mesh boundary enables the vertices, including the

boundary vertices that represent the highly irregular shoreline boundary, to move

during mesh generation step in accordance with the mesh size function. In contrast,

Delaunay refinement and advancing front schemes incrementally modify the trian-

gulation starting from a partitioning of the polygonal boundary and then propagate

into the interior of the meshing domain. This aspect required by front-based mesh

generation schemes requires that the shoreline boundary be simplified in accordance

with the mesh size function before mesh generation commences, which can be a chal-

lenging step.

A set of common coastal ocean relevant mesh size functions were built into the

mesh size function class (edgefx ) that can handle a variety of user-based constraints

and facilitate the approximate reproducibility of mesh vertex locations. The imple-

mentation of these mesh size functions were largely borrowed from pre-existing lit-

erature with some minor enhancements. We presented a polyline mesh size function

to locally enhance resolution around and near marine navigation channels and deep-

draft channels (i.e., thalwegs). These features are found by thresholding upslope-area

calculated from a digital elevation model (DEM) using GIS software. The polyline
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mesh size function may have interesting future applications for the development of

overland meshes that seamlessly mate with ocean meshes. For example, the user

could provide a set of lines that characterize overland ridges so that the polyline

mesh size function can be used to locally enhance mesh resolution to better cap-

ture the local maximums in the topographic heights. Since the representation of the

inter-tidal and floodplain zone in the mesh is critical for coastal flooding applications,

ensuring overland features like hills and levees are correctly represented in the mesh

is a important feature. In its current state, the toolbox is able to constrain piecewise

linear segments that may represent e.g., a series of levees; however, if there is a large

degree of disparity between the point spacing on the constraints and the mesh size

function, then the resulting mesh will be of poor quality.

To ensure that a mesh is computationally stable with a user-requested time step

(relevant when simulating with explicit/semi-implicit numerical models), a CFL-

limiting mesh size function similar to Bilgili et al. [17] was introduced. In this ap-

proach, we estimate the Courant (Cr) number based on shallow water wave theory

and ensure that the final mesh size function satisfies the CFL condition (Cr < 1).

Although applying CFL-limiting to the mesh size function was shown to help encour-

age stability by lowering the Cr, the resulting unstructured mesh may not necessarily

satisfy the CFL condition due to that fact that bathymetric interpolation from the

DEM is not easily constrained. Thus, an iterative algorithm to be applied after the

mesh was developed (CheckTimestep) to locally alter the connectivity by decimating

vertices that violate the CFL condition. Depending on the users choice of time step

and the various mesh size constraints, the algorithm decimates vertices in certain

regions (e.g., small constricted channels) that may or may not be tolerable for the

problem at hand. In such regions, anisotropic mesh elements [e.g., 119] that could be

generated using mesh size functions which include a directional component may be

more beneficial than isotropic equilateral elements. Thus, implementing anisotropic
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mesh size functions into the software, along with the testing of the resultant meshes

in real coastal ocean problems, is an interesting direction for future work.

We emphasized the expensive nature of building large-scale high-fidelity mesh size

functions which motivates the use of a multiscale meshing approach. This approach

reflects the often sparse spatial coverage and heterogeneous nature of freely avail-

able digital elevation data that are often used in the construction of the mesh size

functions. Multiscale meshing allows the user to build (extremely) high-resolution

local mesh size functions that are embedded in larger scale ocean domains. The end

result is a mesh that seamlessly transitions from the high refinement region to coarser

elements outside the region of interest. This is practically useful to accurately model

coastal flooding in small regions (e.g., a city or a small island – here we show an

example of the approach with the mesh refinement region around Puerto Rico and

the U.S. Virgin Islands) that may be susceptible to storms and tropical cyclones (TC)

passing over it. For large-scale TC-driven storm surge events, it has been shown that

a large model domain is essential to capture the pre-event conditions that can alter

the modeled severity of the event [18]. In forecasting scenarios, the multiscale mesh-

ing approach could be used to mesh around the predicted land-falling region based

on the cone of uncertainty of the path of the storm to locally higher resolution. This

approach could generate meshes for the prediction of coastal flooding on-the-fly as

new forecast data becomes available. Given the local nature of the mesh refinement

in this approach, these meshes could be computationally more e�cient with smaller

minimum element sizes than pre-existing ones, e.g., the U.S. National Ocean Service’s

(NOS) Hurricane Storm Surge Operational Forecast System (HSSOFS) mesh [146],

which cover entire swaths of coastline with medium level resolution.

The objected-oriented structure of the software enables each component to be used

in isolation and/or under workflows di↵erent to that presented here. For instance,

mesh size functions constructed through the edgefx class could be used with other
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mesh generators to distribute vertices. Furthermore, the ability of OceanMesh2D to

automatically adapt user-supplied shoreline datasets to a mesh size function is a new

feature to the authors’ knowledge. This ability could be used as a standalone feature

to produce polygonal boundaries that approximate the shoreline with a variety of

spatial constraints for other mesh generator packages or GIS applications.

Three examples were used for demonstration in this study (Fig. 2.1 and Table 3.1).

A further three separate examples are illustrated in the user guide [129]. All six

examples are released with this version of the OceanMesh2D library. They can be

used to become familiar with the software, for testing purposes, and as templates for

scripts used to generate the user’s custom mesh.
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CHAPTER 3

ON THE AUTOMATIC AND A PRIORI DESIGN OF COASTAL OCEAN

CIRCULATION MODELS

3.1 Overview

This chapter investigates the design of unstructured mesh resolution and its im-

pact on the modeling of barotropic tides along the United States East Coast and

Gulf Coast (ECGC). A discrete representation of a computational ocean domain

(mesh design) is necessary due to finite computational resources and an incomplete

knowledge of the physical system (e.g., seabed topography). The selection of mesh

resolution impacts both the numerical truncation error and the approximation of the

system’s physical domain. To increase confidence in the design of high-resolution

coastal ocean meshes and to quantify the e�cacy of current mesh design practices,

an automated mesh generation approach is applied to objectively control resolution

placement based on a priori information such as shoreline geometry and seabed to-

pographic features. The simulated harmonic tidal elevations for each mesh design are

compared to that of a reference solution, computed on a 11 million vertex mesh of

the ECGC region with a minimum shoreline resolution of 50-m. Our key findings in-

dicate that pre-existing mesh designs that use uniform resolution along the shoreline

and slowly varying resolution sizes on the continental shelf ine�ciently discretize the

computational domain. Instead, a targeted approach that places fine resolution in

narrow geometric features, along steep, topographic gradients, and along pronounced

submerged estuarine channels, while aggressively relaxing resolution elsewhere, leads
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to an e�cient mesh design with an order of magnitude fewer vertices than the refer-

ence solution with comparable accuracy (within 3% harmonic elevation amplitudes

in 99% of the domain).

3.2 Introduction and background

Two-dimensional (2D) unstructured triangular meshes are widely used to repre-

sent the horizontal domain in the simulation of hydrodynamic processes of ocean,

shelf and inland coastal water systems. In general, these variable resolution meshes

are used to study a broad spectrum of processes in the coastal ocean from wind waves

with periods on the order of seconds to large scale shelf and oceanic circulation with

timescales on the order of days to months. Most commonly, barotropically-driven

long wave processes (tides, surge, and tsunami) with periods on the order of minutes

to hours are simulated with these meshes. This includes the modeling of tidal dynam-

ics [23, 36, 122] and the prediction of extreme water levels during high energy events

such as tropical and extratropical storms [1, 3, 42, 50, 51, 78, 153, 156, 158, 161].

Critically, unstructured triangular meshes facilitate seamless cross-scale modeling of

the complete long wave spectrum [125, 159, 160].

Unstructured meshes are used to capture the detailed hydrodynamic response

driven by the governing physical processes and their interactions with the physical

system. Historically in fluid mechanics, approaches to mesh design and adaption have

often been based on a posteriori techniques based on the residual of the flow solution

on a per element basis [e.g. 15, 113]. In coastal modeling, an a posteriori analysis has

been performed using a formal local truncation error analysis (LTEA; [71, 73, 115]

with the objective to equalize the truncation error throughout the computational

domain. However, a complicating factor when using an a posteriori method is that

truncation errors that arise from approximating the underlying equations using a nu-

merical technique conflate with approximation errors from representing the system’s
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physical domain. As finer mesh sizes are used to reduce the truncation error, new

narrower shoreline details emerge that can alter the system’s response. Thus, while

the numerical truncation error for a given initial mesh description can be minimized,

the system domain error may persist because critical features still do not exist in the

boundary description.

The aforementioned considerations motivates us to use a feature-driven a pri-

ori approach. In fact, for the most part meshes for coastal modeling have been

developed using an a priori approach adjusting resolution to match both the phys-

ical system’s length scale and estimated length scales of the dominant physics [e.g.,

29, 36, 37, 85, 98, 99]. Feature-driven a priori approaches have been proposed to

automatically design meshes in this manner [2, 41, 131]. Nevertheless, until now

it has been di�cult to build a su�cient number of meshes to enable a controlled

comparison of the simulated results for realistic coastal ocean hydrodynamic models

through the traditional ad hoc and tedious [72] development process. However, re-

cent advances in automated unstructured mesh generation technology for the ocean

[8, 31, 57, 126, 131] now enable well-defined repeatable workflows for generating de-

tailed multiscale coastal ocean meshes. These approaches alleviate the burden previ-

ously associated with the model development steps and ensure that the development

process is su�ciently controlled to facilitate inter-comparisons between simulation

results from a variety of mesh designs with logical perturbations.

A ubiquitous feature-driven a priori meshing criteria for coastal modeling is the

wavelength-to-gridscale heuristic that sizes resolution according to an estimate of

depth-dependent shallow water wave celerity to maintain constant discretization of

the wavelength of the dominant mode [69, 99, 152, 153]. This heuristic produces

meshes that contain the finest resolution nearshore, element size transitions that vary

smoothly, and nearly constant resolution across the continental shelf. However, the

wavelength-to-gridscale heuristic is based on a one-dimensional analysis that assumes
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no bathymetric gradients and thus cannot capture complexity of seabed features like

shelf breaks and isolated banks [69] nor the intricacies of the 2D shoreline. Further,

submarine channels that are important to convey flow into the estuarine system can

become coarsely discretized with its application. While a long legacy of meshes have

been built with this heuristic, the application of resolution using this approach leads

to models with many degrees-of-freedom if the parameter dictating the number of

nodes per wavelength is set to a large value to compensate for inadequately targeting

resolution at the aforementioned features.

Consideration of the topographic-length scale, i.e., applying finer resolution in-

versely proportional to the seabed depth and directly proportional to seabed topo-

graphic gradient has also been widely conducted [37, 57, 99]. This approach refines

the resolution in proximity to the shelf break and submarine ridges and banks, which

often tend to be co-located with large gradients in the solution [74]. In fact, the

LTEA analysis method proposed by Hagen et al. [71, 73] demonstrated that the

minimization of truncation error tended to produce a distribution of vertices that re-

sembled the application of the topographic-length scale. Representing steep gradients

is also useful to capture submarine ridges and rough topography over which internal

tides are generated [63]. This process is often included as a parameterized dissipa-

tion process in barotropic tidal models [68, 122, 123]. However, a drawback of the

topographic-length scale is that on the inner shelf the topographic gradient to depth

ratio can become large due to topographic irregularities which leads to excessively

fine resolution as compared to the length scales of the dominant physics.

Unstructured meshes have a powerful capability to e�ciently capture the geomet-

rically complex form of the shoreline and of the complex esutaries and the connected

dendritic inland channels, but most prior works have not taken full advantage of this

capability by applying uniformly fine resolution along shorelines and within inland

waterways in regions of interest. For instance, NOMAD (NOAA Operational Model
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with ADCIRC), a mesh used for real-time predictions of storm surge and tides (e.g.,

ASGS [59]), uses uniform coastal resolution of approximately 250 m along all the

United States East Coast and Gulf Coasts (ECGC) [146]. Other examples of meshes

that resolve the shoreline uniformly includes those used in recent long-term regional

analyses of storm surge and tides in ECGC [⇠5 km; 108] and [⇠1 km; 101], and those

used for hurricane-induced coastal flooding in the northern Gulf of Mexico [⇠100 m;

85]. On one hand, uniform shoreline resolution ensures that the representation of

the inlet/backbay system that control coastal inshore hydrodynamics is best repre-

sented in the mesh of the specified resolution. On the other hand, the application of

nearly uniform resolution nearshore over-resolves many sections of the coastline and

inland waters that are straight and geometrically simple leading to a situation where

cost constraints then necessitate under-resolving narrow and constricted waterways.

Studies in the South Atlantic Bight have demonstrated that the representation of

the estuary system as a whole can alter the morphodynamic feedback between the

tides and the shoreline form [10, 23]. Thus, beyond applying fine resolution zones

nearshore, it is often critical to resolve the intricate dendritic inland waters and to

quantify the feedback e↵ects from the integrated system. These irregular shoreline

and inland systems are best captured using highly variable mesh resolution.

Another consideration for developing unstructured meshes is the rate of element

size transitions between zones of variable resolution otherwise referred to as the gra-

dation [4]. It is known that element size transitions must be smooth and bounded

above by a constant to avoid numerical errors and inaccuracies [2, 138]. In fact, the

error analysis undertaken by Hagen et al. [71] clearly demonstrates that a gradation

above 50% will cause odd order error terms to dominate and subsequently degrade

a formally second order numerical method to first order. While a theoretical upper

bound value for the gradation is known, the total number of vertices in a coastal

ocean discretization can wildly vary depending on the choice of gradation below 50%
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(a large gradation will lead to fewer vertices). Thus, the gradation rate needs to be

explored to identify a suggested tighter range of values that e�ciently discretizes the

physical domain while maintaining accuracy in the simulation of the coastal ocean.

A common first step in the production of a coastal hydrodynamic model is to as-

sess the simulated accuracy of astronomical tides [e.g., 122] prior to the simulation of

extreme sea levels. At this initial stage of the model development process, the model

is calibrated through adjustments to frictional and dissipative parameterizations in

order to agree with measured data. However, when the mesh underresolves shoreline

and seabed features, the system’s response may become distorted leading to an in-

ability to correctly produce solutions across the entire domain and energy spectrum.

An example of this would be tuning the model to agree with observations of dominant

semi-diurnal elevation tidal constituent regionally but this may not lead to a good

agreement globally nor for the other tidal constituents. Instead, by gathering knowl-

edge on how tidal solution depends on mesh resolution in realistic coastal modeling

problems, we can enable e�cient and uniformly more accurate mesh designs that can

then facilitate more dynamically correct calibrations of friction parameterizations.

Our premise is that the circulation and flow of water is largely driven and con-

trolled by the representation of the physical system and the representation of the

physical system is integrally related to the mesh sizing functions. Thus, the sizing

functions need to be carefully considered for ensuring high fidelity coastal ocean hy-

drodynamic simulations that have a relatively low associated computational cost.

This is particularly relevant for operational/real-time forecast systems in order to

be practically computationally feasible. Many of the previously used a priori mesh

size heuristics (e.g., topographic-length scale, and distance-to-shoreline) have proven

useful in practice for producing accurate solutions for tides and storm surges. Thus,

we have devised an approach that combines and builds on such mesh size heuristics

to variably resolve shoreline geometry, seabed topography, controlling the geometric

85



expansion of element sizes, and capturing submarine channels that convey flow into

and out of the estuaries. Our ultimate goal is to represent the physical system and

response with the fewest number of degrees of freedom while preserving the accuracy

of the solution as compared to measured data. Here, we apply our approach to the

widely studied ECGC region and conduct an in-depth analysis of the sensitivity of

the barotropic tides to the domain discretization.

This paper addresses the following two questions:

a) How does the simulation of barotropic tides respond to the representation of

shoreline geometry and seabed topography in the ECGC region? What are the

sources of error and how do these contribute to the measured di↵erences?

b) Can we incorporate our results from a) to make recommendations for a set of

mesh size functions that place resolution according to shoreline geometry and

seabed topography to e�ciently discretize coastal ocean domains that approx-

imately reproduce simulation results from an extremely well-resolved mesh?

3.3 Methods, Data and Tools

3.3.1 ECGC Study Domain and Data

The ECGC study domain for this work (Figure 3.1) contains a single open ocean

boundary along the 60�W meridian which is placed here for geometric simplicity and

because it lies in the deep ocean where the tides vary gradually and hence suitable for

coupling to global tidal model solutions that are highly accurate in the deep ocean

[139]. The placement of the open boundary in this way is su�ciently far from the

coastal zones to represent tide responses throughout the ECGC domain [152].

The domain is classified into four distinct regions as shown in Figure 3.1 along

with co-tidal and co-amplitude lines of the dominant constituents. The tides are

predominately semi-diurnal dominated by the M2 along the Eastern Coast of the
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Figure 3.1. The study area in which colored zones in the center panel
indicate the mesh size upper bounds (hmax) in the reference (REF) mesh
(minimum mesh size is Lmin = 50 m). The red and green colored zones

together indicate the comparison zones for all the cumulative area fraction
error curve calculations. The dashed magenta line indicates the open ocean
boundary on which tidal elevations are specified. The top left and right
panels indicate TPXO9.1 solutions of the M2 and K1 tidal constituent

elevation amplitudes (colors) and phase contours in intervals of 30� (M2)
and 15� (K1).
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United States – North Atlantic (NA), Mid-Atlantic Bight (MAB), and South Atlantic

Bight (SAB). In the western half of the Gulf of Mexico (GOM) the K1 and O1

dominate water level variations, while the eastern side is mixed-diurnal with the M2,

K1, O1, and S2 contributing roughly in equal parts.

3.3.1.1 Bathymetric and Shoreline Datasets

The bathymetric data used for this study are primarily based on SRTM15+

[132] and supplemented in areas of overlap with the Coastal Relief Model [CRM;

5] in addition to local 1/3 and 1/9 arc-sec NCEI topo-bathymetric coastal eleva-

tion model datasets where available (https://www.ngdc.noaa.gov/mgg/coastal/

coastal.html). The entire bathymetric dataset was integrated into a final digital

elevation model (DEM) that was re-sampled on a uniform grid spacing of 3 arc-sec

(⇠100 m), which is equal to the resolution of the CRM. For SRTM15+ and the

CRM, the vertical uncertainty in the data is generally larger than the discrepancy

between local mean sea level and the NAVD88 vertical reference datums, so no e↵ort

was made to rectify the vertical datum for these data. However, all NCEI local and

regional datasets were adjusted to local mean sea level using VDatum [154] where

the transformation was available. The horizontal datum of the re-sampled DEM is

in geographic coordinates or WGS84.

Since the shoreline (where land meets the ocean in the temporal mean sense) as it

exists in nature has a fractal geometry and is constantly evolving due to sedimentation

and erosional processes, variations in discharge, sea level rise, and anthropomorphic

e↵ects, its exact representation may be intractable. For the purposes of this work, we

consider a static version of the shoreline as depicted from the relatively recent (5-10

years old) topo-bathymetric data used in this study. A polyline that approximates

the local mean sea level shoreline was extracted using the GRASS Geographical

Information Systems r.contour module with a cut parameter of 150 [67]. While
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higher quality shoreline vector datasets exist, a preference was given to the shoreline

extracted from the re-sampled DEM that was created for this work given that it

would produce mesh boundaries that are aligned with the 0-m contour from the data

sources. In other words, this helps to improve the agreement with the location of

where the shoreline is when topo-bathymetric data is interpolated onto the mesh

vertices. The discrete shoreline extracted from the DEM model can only resolve

shoreline length-scales down to its horizontal resolution of 3 arc-sec (approximately

90 m).

3.3.1.2 Tide Gauge Data

Harmonic tidal constituent observations at tide gauges in ECGC (Figure 3.1) are

used in this study to the validate the model simulations on selected meshes. The

observations are predominantly made up of posted harmonic constituents at 636 Na-

tional Oceanic and Atmospheric Administration (NOAA) coastal tide gauges (https:

//tidesandcurrents.noaa.gov/stations.html?type=Harmonic+Constituents). An

additional 31 observations located on the continental shelf and in deep water [139]

are also included (available from 1.

3.3.2 Hydrodynamic Model Configuration

This study uses the ADvanced CIRCulation model (ADCIRC) [96, 153] to perform

the hydrodynamic simulations of two-dimensional (2D) barotropic tides. ADCIRC is

a continuous-Galerkin finite element model that solves the shallow water equations

(SWEs) using the Generalized Wave Continuity Equation [GWCE; 86, 100] on an

unstructured triangular mesh [151]. It is numerically a second-order solver that

discretizes the domain with linear elements.

1ftp://ftp.legos.obs-mip.fr/pub/FES2012-project/data/gauges/2013-12-16/
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The governing equations are the shallow water equations (SWE) in primitive,

non-conservative, and barotropic form:

@⌘

@t
+r · (uH) = 0 (3.1)

@u

@t
+ u ·ru+ fk⇥ u+ gr(⌘ � ⌘EQ � ⌘SAL) + Cf

|u|u

H
+

�
1

H
r · [⌫tH(ru+ruT)] = 0

(3.2)

where ⌘ is the surface elevation, H = h+ ⌘ is the total water depth in which h is the

still water depth, u is the depth-averaged velocity vector, g is the acceleration due

to gravity, k is the vertical unit vector, and f = 2⌦ sin� is the Coriolis parameter

in which ⌦ is the angular speed of the earth, and � is the latitude. The quantity

⌘EQ is the equilibrium tide, and ⌘SAL is the ocean self-attraction and loading term

(SAL). In the dissipation terms, Cf is the coe�cient of bottom friction, and ⌫t is the

horizontal eddy viscosity coe�cient.

We perform all simulations with the following setup: the model is forced by astro-

nomical tidal elevation open ocean boundary conditions, astronomical tidal equilib-

rium potential terms, and astronomical tidal self-attraction and loading (SAL) terms

[76].

The time and space advective components were included in all calculations and

wetting/drying is enabled although a mminimum depth is enforced on the shoreline

of 1 m below sea level to ensure flow through narrow channels on the scale of the min-

imum resolution. A constant quadratic bottom friction was used with the standard

coe�cient of 0.0025. Horizontal dissipation was parameterized through a constant

lateral eddy viscosity term of 50 m2s�1. The GWCE mass matrix is solved using ex-

plicit time discretization instead of the consistent semi-implicit method. This choice

was not found to a↵ect the simulation results at the 2 second simulation timesteps

we are using here with the Courant-limited explicit timestepping scheme. There-
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fore, the explicit method was preferred due to improved computationally e�ciency

(approximately twice as fast) [145].

3.3.3 Mesh Generation

The construction of regional coastal ocean meshes for hydrodynamic simulations

in models such as ADCIRC is an involved process with many degrees of variation.

In order to analyze how mesh resolution may a↵ect numerical simulations, it is vital

to have an automated and reproducible workflow to systematically control aspects

of the mesh design. By reproducible we mean that given the exact same inputs and

options, the vertex locations of a new instance of the mesh will be approximately the

same leading to negligible di↵erences between simulation results repeated on various

instances of the mesh. The approximate similarity of meshes is evidenced in results

throughout the manuscript: nearly similar mesh designs exhibit the smallest relative

di↵erences between their solutions.

Some approaches and tools have been developed recently to make these workflows

feasible [31, 57, 65, 131]. For this work, all unstructured meshes were developed with

the OceanMesh2D software [129, 131]. OceanMesh2D is a self-contained MATLAB

mesh generation toolkit for the development of 2D unstructured triangular meshes.

Specifically, we use Version 2.0 of the software which is an extension of V1.0 [131]

with support for mesh generation using map projections to ensure that meshes on the

sphere conform to Earth’s curvature and obey user-defined resolution requests which

are specified in meters. Any map projection that is featured in the m map mapping

package [116] can be selected.

A number of ocean meshes are automatically generated in Lambert conformal

conic projection space using the multiscale meshing approach [131], whereby multi-

ple boxes are used to cover the region roughly indicated by the green and red colored

zones in Figure 3.1(a)-(b). Inside these boxes, the minimum resolution Lmin is spec-
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ified to between 50 m and 250 m, depending on the experiment (see Section 3.3.4).

A larger box covering the whole study region is used to mesh the rest of the domain

with a minimum resolution of 1 km that is placed uniformly along the shoreline.

The result is one seamless unstructured mesh, in which the software automatically

smooths mesh resolution sizes between regions.

Topo-bathymetric data, available on a structured grid (DEM), is interpolated

onto the mesh vertices using the grid-scale averaging approach that is built into

mesh generation software [131]. Cell-averaging minimizes sub-grid scale noise arising

from resolution disparity between that of the DEM and the mesh. In contrast, using

linear interpolation in areas where the DEM has higher resolution than the mesh

can lead to substantial changes in the interpolated seabed depth with even small

variations in the vertex location. The minimization of sub-grid scale noise in the

seabed topography is important in order to study the e↵ect of mesh resolution on

the solution.

3.3.4 Experimental Design

In Sections 3.4.1 to 3.4.4, five experiments are explored to examine the e↵ects

of targeted placement of mesh resolution at various seabed and shoreline features

according to a mesh size function or constraint (Table 3.1). Within each experiment

three meshes (categorized as ‘fine’, ‘medium’, and ‘coarse’ resolution) are generated

by varying a single mesh size function parameter while holding all other parameters

constant. All meshes require a minimum mesh size and an element-to-element mesh

size gradation rate (henceforth referred to as gradation), which are set to 50 m and

15%, respectively, unless otherwise stated. The maximum mesh size is set to 10 km

for all meshes.

The e↵ect of the mesh size functions on the resulting triangulation’s that are used

in the various experiments (Table 3.1) are graphically illustrated in Figure 3.2, and
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described below:

• In the distance function (Figure 3.2(a)), mesh resolution is dictated by the min-

imum mesh size at the shoreline (Lmin) and the maximum allowable expansion

rate (g). The variation of Lmin forms Experiment 1.

• The feature size function (Figure 3.2(b)) places mesh resolution according to

the width of the geometric feature. The width is estimated as half the sum of

the distance from a point in the computational domain to the shoreline plus

the distance from the same point to the nearest medial axis (Figure 3.2(c)).

Varying the number of elements per geometric feature width forms Experiment

2.

• The gradation function bounds the mesh size transitions on the structured grid

that the mesh size function is calculated on, which will determine the gradation

(g) on the mesh’s triangulation. The variation of this parameter only forms

Experiment 3.

• The slope function (Figure 3.2(e)) places mesh resolution according to the

length of a topographic feature, targeting regions of high topographic gradi-

ents such as the continental shelf break and slope. Experiment 4 varies the

number of elements per topographic length-scale.

• The submarine channel function (Figure 3.2(d)) targets mesh resolution along

well-defined submarine channels such as dredged shipping channels or morpho-

dynamic conveyances within estuaries that are identified through an upslope

area calculation using a 1000 DEM cell minimum threshold in Geographical

Information Systems software. Experiment 5 varies the number of elements per

channel width. The channel width is estimated according to the seabed depth

near the channel and an assumed slope angle of 30� with the seabed floor.
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Figure 3.2. An illustration of the five mesh size functions that were
investigated in and around the Mid-Atlantic Bight region along the Eastern

United States coastline. Seabed topography is colored and relevant
quantities are noted in the text.
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A highly-refined reference (REF) mesh (Table 3.1) was generated to act as a proxy

for the ‘true’ solution against which our meshes in the experiments are compared. In

this mesh, a set of depth-based maximum element size constraints were used and a

mesh size gradation of 15%. Specifically, the minimum mesh resolution is 50-m and

the maximum resolution was bounded above by 250 m nearshore (depth, b < 50 m), 1

km on the continental shelf (50 m < b < 250 m), and 5 km in the deep ocean (b > 250

m). These mesh size constraints are conservative and they represent values that could

be accommodated in terms of the total computational cost, Courant-based stability

constraint, and the resolution of the geospatial data used (⇠100 m). The REF mesh

contains N = 10,746,955 vertices and represents a mesh design that we classify as

‘overly-discretized’ in the sense that as this study will later demonstrate, it is possible

to substantially reduce the vertex count while maintaining solution accuracy.

Each mesh was used to perform a 122-day tidal simulation to assess the e↵ects on

the astronomical tides due to variations in mesh design. In these simulations, AD-

CIRC is forced through the tidal equilibrium potential and SAL terms throughout the

domain and at the open ocean boundaries with four major semi-diurnal (M2, N2, S2,

K2) and four major diurnal tidal constituents (K1, O1, P1, Q1). Open boundary eleva-

tions are obtained from TPXO9.1 (http://volkov.oce.orst.edu/tides/global.

html) tidal solutions; SAL terms are obtained from FES2014 tidal loading solutions

(ftp://ftp.legos.obs-mip.fr/pub/FES2012-project/data/LSA/FES2014/). In

the assessment of the results of these simulations, a focus is placed primarily on

the variation in the major semi-diurnal tide (M2) since this is the predominant tidal

constituent along the ECGC. The major diurnal tide (K1) is also included where

relevant.

RE =
AID � AREF

AREF
⇥ 100[%] (3.3)

where A is the harmonic elevation amplitude of the tidal constituent in the experiment
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(ID) and the REF meshes. A focus is placed on the M2 and K1 elevation amplitudes

as these represent the predominant semi-diurnal and diurnal constituents reproduced

in the ECGC domain (Section 3.3.1).

The calculation of the RE is proceeded in this manner to keep data extrapolation

to a minimum so that the same shoreline geometric complexity as depicted in each

mesh is present in both solutions under comparison. For all di↵erences, statistics

are only performed on vertices in which the absolute di↵erence from REF exceeds 1

mm or the RE between solutions is greater than 0.1%. These significance values are

considered su�ciently small to ignore for the modeling purposes of barotropic tides

along the ECGC, which have magnitudes on the order of centimeters to meters.

The convergence characteristics of the experiments are examined by comparing

the cumulative area fraction errors (CAFE) or the RE statistic along the continental

shelf margins of the ECGC region (b < 250 m) where high mesh resolution zones were

deployed (union of the green and red colored zones in Figure 3.1). To be consistent

throughout, CAFE curves only consider errors that exceed 1 mm or feature a RE

greater than 0.1% and are determined for the RE statistic. On these CAFE plots,

the y-axis value of a point falling on these curves indicates the percent area having a

di↵erence greater (less) than the positive (negative) value on the x-axis. A solution

that has “converged indicates that 99% of the comparison region has a ±5% RE.

This definition of convergence may be arbitrary but it represents a statistic that can

enable a consistent comparison between solutions.

Last, in Section 3.4.5 we summarize the experiments through the standard devi-

ation of the variation in the RE statistics from the REF mesh. Further, the contri-

bution of numerical error versus error in the physical approximation of the domain

is illustrated. Finally, based on the results of the five experiments described above

we generate mesh designs that combine mesh size functions/experiments together

to achieve an e�cient mesh design that can approximately mimic the tidal solution
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accuracy of the REF mesh.

The following set of statistics are computed to compare the accuracy, in terms of

error against tide gauge observations (Section 3.3.1.2), of the simulated tidal solutions

between the REF mesh and the combination mesh designs.

E =
�
0.5
⇥
A

2
o + A

2
m � 2AoAm cos(✓o � ✓m)

⇤�1/2
(3.4)

B =

PT
t=1(EID � EREF )PT

t=1 EREF

(3.5)

�
2 =

var(EID � EREF )

var(EREF )
(3.6)

where E is the complex root-mean-square error of a tidal constituent for one cycle

and account for the amplitude and phase errors, A and ✓ are the amplitudes and

phase lags of the tidal constituent respectively, the subscripts ‘o’ and ‘m’ refer to the

observed and modeled values respectively, and T in the sum is the total number of tide

gauges. B is the normalized mean bias and �
2 is the normalized variance (var) of the

discrepancies of E between the REF mesh and a particular mesh combination (ID).

A positive value of B indicates that the mesh combination has on average greater

values of E than REF, while a negative bias indicates the model is outperforming

the REF solution. The smaller the value of �2, the more similar the mesh’s solution

is to REF in terms of the distribution of E. Since, any model can be tuned to fit

observations, such as by employing variable bottom friction coe�cients in regions

where errors arise, the main aim here is to minimize �
2 and B, thereby minimizing

the e↵ects of mesh resolution on the solution under the assumption that REF is

su�ciently resolved. For reference, the REF solution has a median E for the M2 of

3.9 cm (computed on all 667 tide gauges, Section 3.3.1.2).
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3.4 Results

3.4.1 Resolving the shoreline

The representation of the shoreline determines the simulated accuracy in modeling

the physical interaction between forcing agents (e.g., tides, winds, and waves) with

shoreline geometrical features (e.g., coves, headlands, back-bays, and lagoons). From

a modeling standpoint, the shoreline’s representation must be simplified to satisfy

computational resources by removing fine-shoreline details from the mesh’s boundary

description that are smaller than the minimum mesh resolution. However, when the

shoreline is simplified, it alters the approximation of the physical domain, and hence

possibly the system’s tidal response [e.g., 69, 105].

This section uses the results from Experiments 1 (Lx ) and 2 (FSx ) to explore

the e↵ects of varying a specified minimum resolution at the shoreline and of varying

shoreline resolution according to a feature size estimation, respectively. A compar-

ative example of the Lx and FSx designs along an estuarine region is illustrated in

Figure 3.3. As the minimum mesh resolution is coarsened from 50 m to 250 m, nar-

row waterways, tributaries, and estuaries that are smaller in horizontal length-scale

than the minimum mesh resolution are automatically removed in the mesh generation

process [131]. The removal of fine-scale shoreline geometry is considered a shoreline

approximation error in the sense that the approximate representation of the shoreline

departs from its representation in the original shoreline dataset. In contrast, the fea-

ture size approach creates a mesh that represents the physical system accurately by

connecting small waterways together in a similar manner to L50, but requiring fewer

vertices as resolution can expand in size away from geometric constrictions along the

shoreline (Figure 3.3).

The shoreline approximation error is quantified by integrating the area enclosed

by the polygonal region that defines the mesh boundary (S in which the sub-script
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Figure 3.3. Mesh connectivity near Ossabaw Island, Georgia that illustrates
changes to the capturing of narrow channel geometries as minimum mesh
resolution is increased from 50 m (left) to 250 m (middle), and when using
a shoreline width function that varies minimum mesh resolution between 50
m and 250 m (right) automatically based on shoreline geometric properties.

denotes the experiment ID).

Aerror = |SID � SRef | (3.7)

Aerror increases geometrically as the minimum shoreline resolution is coarsened from

50 m to 250 m in the Lx meshes (Figure 3.4). For example, Aerror = 2,200 km2

for L100 increases approximately ten-fold to Aerror = 22,000 km2 for L250, while

the total vertex count reduces from 4.9 million to 0.8 million vertices between L250

and L50 mesh designs. In contrast, the FSx experiments exhibits no correspondence

between total vertex counts and shoreline approximation error and Aerror remains

small reaching a maximum of approximately 1,500 km2. The FSx design distributes

50-m mesh sizes in narrow waterways and along high curvature shoreline sections,

while allowing mesh sizes to expand up to 250 m along straighter shoreline segments.
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Figure 3.4. The shoreline geometry error Aerror, Equation (3.7), on the left
axis for the meshes used in the shoreline approximation experiment along
with the total vertex count for each mesh on the right axis. Solid lines

represent data for meshes created with uniform shoreline resolution Lx and
dashed lines indicate meshes created with the feature size approach FSx.
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Figure 3.5. Panels (a)-(b) depict the relative error in the M2 harmonic
elevation amplitude from the REF solution when the minimum mesh

resolution along the shoreline is coarsened from 50 m and 250 m. Panels
(c)-(d) depicts the relative error (RE) in the M2 harmonic elevation

amplitude from solutions computed on meshes built with the feature size
function. Insets around areas described in more detail are shown.
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The predominate variation in vertex counts in the FSx design is the number of vertices

per geometric width of the shoreline, not the minimum element size. Thus, the FS2

design is capable of preserving a similar amount of shoreline geometry as L50 (e.g.,

Figure 3.3a,c) but with approximately two times fewer vertices.

As is evident in Figure 3.5, the variation in the representation of the shoreline

predominately a↵ects the M2 elevation amplitude in shallow shelf regions (< 250-

m depth range). A largely insignificant error (< 1 mm or ±0.1%) was observed in

the K1 elevation amplitude (not shown). The relative M2 errors (RE) among the Lx

experiments are greatest for L250 and smallest for L50 (Figure 3.5a-b), demonstrating

the improvement of finer resolution. RE are focused in estauries in the SAB and in

the MAB around the Chesapeake Bay and the Gulf of Maine where large RE values

of 10-15% are found in the L250 mesh (Figure 3.5b). In the MA, SAB, and eastern

GOM shelf zones, there is a weak 1-3% deamplification in the M2 amplitude with the

exception of the Chesapeake Bay estuary, which exhibits a pronounced RE of +5-10%

as the mesh resolution is coarsened from L50 to L250. In general, the FSx meshes

(Figure 3.5c-d) produce similar relative error patterns to the Lx meshes. However,

negative RE values are only < 1% in the Chesapeake and SAB for the coarsest Lx

design (FS2) compared to RE values in L250 which are approximately ±3% here.

Further, FS2 reduces the amplification in the Gulf of Maine by a small amount ⇠1%.

The western GOM shelf region weakly deamplified by 1-3% in the FS8 design, but

this was not observed in the other Lx designs.

Although local di↵erences in RE are illustrated in Figure 3.5, the CAFE curves

demonstrate remarkable similarity in 99% of the comparison zone between the Lx and

FSx solutions (i.e., above the thick 1% cumulative area line) for both the M2 and K1

elevation amplitudes (Figure 3.6). The CAFE curves for the M2 are asymmetrical

and indicate more of the domain has a positive error, which is accentuated in the

tails below the 1% cumulative area line. While all the solutions in this experiment
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Figure 3.6. The cumulative area fraction error (CAFE) from the REF
solution in the comparison region for panel (a) the M2 elevation amplitude

and panel (b) the K1 elevation amplitude. The dotted lines denotes
solutions computed on meshes that use the FSx design while the solid-lines

denote meshes created with the Lx design.

have achieved a converged solution, the FS6 and FS8 contain less positive RE than

the Lx designs, while the opposite is true for the negative crossing although the

di↵erence is marginal (1-2%). s The relatively coarser L250 (+4.0% RE) and FS2

(+3.9% RE) mesh designs exhibited only slightly larger positive errors in the M2

elevation amplitude as compared to L50 and the FS8 design. These di↵erences are

marginal considering the 4 million total vertex count di↵erence between the fine and

coarse mesh designs (i.e., L50/FS8 vs. L250). For the K1, all meshes have converged

solutions to our tolerance and respond far less to alterations in mesh design than the

M2.

3.4.2 Mesh size gradation

The concept of grading is a key capability of unstructured mesh finite element or

finite volume modeling in which coarse elements in the far-field grade smoothly into
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the more finely resolved region of interest to e�ciently discretize regional and global

ocean domains. This gradation rate between zones of variable resolution can greatly

influence the number of vertices in the mesh (Figure 3.7). Elemental size grading has

been based on bounding an estimate of the Courant number to encourage numerical

stability [98]; however, the grade can also be based on geometric criteria by ensuring

that neighboring mesh element sizes cannot enlarge too quickly [4], i.e., the gradation

is bounded above by a maximum value. It is understood from a general modeling

point of view that excessive gradation rates lead to triangles with acute or obtuse

angles, which can impact the stability and numerical accuracy of the model [102, 138].

Further, the analysis by Hagen et al. [71] for one dimensional domains demonstrates

that a high gradation value (g ⇡ 0.5) leads to the introduction of odd order truncation

error term, which lowers the order of the method to first-order accurate.

A higher valued mesh size gradation will degrade the approximate representation

of the domain by creating comparatively coarser mesh sizes away from the targeted

zones of fine resolution. Note that the mesh generator is bounding the gradation

rate above by the user-defined parameter value only on the mesh size function and

it is assumed that given the convergence of the mesh generator the gradation rate

is similarly bounded in the triangulation (Section 3.3.4). Coarser mesh sizes tend

to smooth the interpolation of seabed features onto the mesh vertices and this data

interpolation e↵ect can be quantified in the meshes by calculating the overall volume

enclosed by the mesh while holding the shoreline boundary fixed (i.e., the surface area

of the total mesh is constant). Thus, similar to the shoreline approximation error

(Eq. 3.7), the seabed approximation error is calculated as the absolute di↵erence in

total volume from the REF mesh:

Verror = |TVID � TVREF | (3.8)

where TV is the total mesh volume for the mesh denoted by ID and is calculated as
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the sum of all the mesh element volumes. An element volume is calculated by mul-

tiplying the average depth of the element by its area. Since the REF mesh employs

uniform high resolution mesh sizes throughout the nearshore and continental shelf

zones (c.f., Figure 3.1), it represents the seabed surface with the smallest approxima-

tion error, which implies that the REF mesh encloses the largest total volume in the

ECGC domain. Note that the data interpolation approach we are using is a grid-scale

average (Section 3.3.3) and is not a globally conservative interpolation scheme. From

Figure 3.7, it is apparent that there is a diminishing reduction in the total vertex

count of the mesh with increased gradation. For the purposes of this study, we were

not able to explore meshes with gradation greater than 35% due in Experiment 3

(Gx ) due to the introduction of triangles with very skewed aspect ratios and obtuse

and acute angles that created numerical accuracy issues.

The increase in mesh size gradation from 15% to 35% leads to a highly amplified

error pattern in the NA region for both M2 and K1 constituents as well as along the

MAB for M2 (Figure 3.8). In the NA subdomain (Gulf of Maine), the M2 RE is

increased from 2-5% for G15 to 10-21% for G35 (colors are saturated in Figure 3.8b),

in which the maximum RE is focused on the Georges Bank. In the opposite direction,

the K1 RE is nearly uniformly decreased from -3% for G15 to -6% for G35 in the

NA subdomain. The M2 RE in the MAB, SAB, and eastern GOM tends to weakly

deamplify by approximately 1% to 5% along the continental shelf zones. In contrast

to the shoreline approximation experiment, a relatively large deamplification of the

M2 RE occurs in both the Chesapeake Bay and Delaware Bay as the gradation is

enlarged (Figure 3.8a,b). The M2 RE reaches as high as 15% in this region for the

G35 experiment (colors are saturated in Figure 3.8a).

As the mesh size gradation grows, the tidal elevation amplitudes start to diverge

substantially from the REF solution (Figure 3.9). In 99% of the comparison zone, the

G15 mesh has an M2 error between -1.3% and +3.0% RE whereas G35 has between

106



Figure 3.7. The seabed approximation error Verror (Equation 3.8) on the
left-axis (blue x’s) as the mesh size gradation is increased from 15% to 35%
in increments of 5% while the shoreline boundary is held fixed (i.e., area of
domain is constant). The total vertex count Nvertex in each mesh on the

right axis (dashed red x’s). The REF mesh vertex count is demarcated by a
black asterisk in the top left corner of the figure.

107



Figure 3.8. Panels (a)-(b) illustrate the RE in the M2 elevation amplitude
from the REF solution as the mesh gradation bound is increased to 35%

while in panel (b) it is kept low at 15%. Panels (c) and (d) are the same as
panels (a)-(b) but for the K1 elevation amplitude. The 250-m isobath

contour is drawn as a magenta line in each panel for reference. Insets are
shown to reflect areas that are described in the text.

108



Figure 3.9. The cumulative area fraction error (CAFE) in the comparison
zone (c.f., Figure 3.1) in panel (a) for the M2 elevation amplitude and panel
(b) for the K1 harmonic elevation amplitude using the meshes created for

the mesh size gradation experiment.

-5.0% and +15% RE. Furthermore, the G35 mesh design exhibits between -5.5% and

+6.5% K1 RE in the 99% comparison zone, which is compared to -3.0% and +0% K1

RE for G15. Unlike the shoreline experiment where all meshes converged, only the

G15 mesh converges for the M2 constituent, and the G15 and G25 meshes converges

for K1.

3.4.3 Resolution along bathymetric gradients

The main motivation for increasing the horizontal resolution in the open ocean

is to more accurately represent sharp seabed gradients, particularly those that char-

acterize the continental shelf break and slope. The representation of these seabed

gradients is captured with the topographic-length-scale Sx (Figure 3.2 and Table 3.1).

The topographic-length-scale Sx is considered a useful mesh heuristic [see 69, for a

review] to aid in the modeling of shelf break dynamics [74, 79, 98], subtidal dynamics

[37, 95], and internal tide generation processes [157] and their e↵ects on barotropic
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tides [122, 123]. Further, Hagen et al. [72] has demonstrated that an inadequate pre-

scription of resolution along sharp seabed gradients is a source of numerical truncation

error for tidal models. However, as b ! 0, the Sx meshing criteria fails as resolution

becomes excessively fine in shallow depths both violating the Courant number and

introducing unnecessarily fine details into the problem.

The topographic-length-scale Sx parameter must consider the trade-o↵ between

the improvement to the solution of barotropic tides and the additional mesh vertex

count. Chen et al. [37] suggested resolution sizes between 3.3 to 6 km to capture the

shelf break and 2 km to capture the deep slope in the Arctic Ocean. Lyard et al.

[99] suggested S15 globally using quadratic finite elements, but noted that this value

was restricted in its spatial application due to the excessive computational expense

it incurred. In our studies, besides the excessive computational expense incurred

by the additional degrees-of-freedom, we have found that using Sx larger than S20

leads to resolution along the shelf-break that can extensively restrict the feasible time

step (i.e., time step of 2 s with Courant number bounded to 0.5). Note that the Sx

heuristic is only applied where b > 50 m to avoid issues in shallow depths, where

data many be highly noisy and contain many small-scale features such as channels

that we propose an alternative strategy to resolve documented later on.

In Experiment 4 (Sx ) the vertex count is increased by 4% to 20% over the L50

mesh, accompanied by improvement to the physical domain approximation, as il-

lustrated along a transect spanning the cross-shelf direction in the MA region (Fig-

ure 3.10). Mesh resolution in the vicinity of the shelf break zones is enhanced to

approximately 1.2 km and 0.8 km for S5 and S20, respectively. A point worth not-

ing is that seabed features exist on the continental shelf break, such as the drowned

Hudson river valley, which will otherwise be completely smoothed over without the

Sx heuristic. In comparison, without Sx, resolution is coarser than 8 km (close to the

maximum resolution size) in the vicinity of the shelf break (see L50 in Figure 3.10b),
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Figure 3.10. (a) A cross-shelf transect in the MAB region indicated in blue
with the asterisk indicating the start of the transect, the magenta line is

the 250-m isobath, and the red line is the shoreline; (b) the mesh resolution
along the transect for the Sx, REF, and H50 meshes. Panel (c) illustrates

the seabed topography along the transect for each mesh. Panel (d)
illustrates the di↵erence in seabed topography from each mesh and the

REF mesh along the transect.
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Figure 3.11. Panels (a)-(b) depict the M2 elevation amplitude RE for
solutions computed on the Sx meshes. Panels (c)-(d) depict the RE the K1

elevation amplitude.

which tends to shift the break zone shoreward and result in a smoother and more

gradual representation of the seabed profile along the transect (Figure 3.10c). The

Sx heuristic results in a clear improvement in the depiction of the seabed profile. S20

had seabed profile di↵erences of less than 50 m from the REF mesh, whereas the

seabed profile di↵erence for L50 is as large as 200 m (Figure 3.10d).

The finer resolution along seabed gradients using Sx leads to a significant overall

reduction in the error pattern associated with the M2 elevation amplitude in the MA

and NA subdomains (Figure 3.11a-c), with the M2 error pattern diminished almost

entirely for S20 (Figure 3.11c). Note that although the largest RE is co-located with

the phase convergence zone of the M2 tidal species in the MA and NA domain (where

the elevation amplitude is zero), the RE is not confined to solely the amphidromic

point and emanates around the entirety of the NA subdomain. Similarly, for the K1
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Figure 3.12. The cumulative area fraction error (CAFE) curves in the
comparison zone for the Sx meshes.

elevation amplitude, an approximately -4% RE in the NA subdomain for the L50 (S0)

mesh, is undetectable for any of the Sx meshes (Figure 3.11d-f). Contrastingly, in

the GOM domain the application of Sx tends to introduce di↵erences from the REF

mesh rather than reduce them. Upon inspection, the REF is less resolved in parts of

the GOM, Bahama Banks, and the Caribbean Sea (c.f., Figure 3.1) in comparison to

the Sx meshes here, possibly explaining this result.

The CAFE curves for M2 and K2 (Figure 3.12) clearly illustrate that increased

resolution along seabed gradient leads to a converged solution in 99% of the domain

for S5, S10 and S20 according to our tolerance level of ±5%. The S5 mesh has

the largest M2 error of ±2.9% RE in 99% of the comparison zone, which predom-

inantly corresponding to the errors in the MA and NA domains. As evident from

Figure 3.12, the K1 was far less responsive to the choice of Sx mesh design than M2,

with di↵erences on the order of ±1%.
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3.4.4 Cross-sectional representation of estuarine channels

Estuarine hydrodynamics are controlled by the depth and form, together referred

to as the morphology, of the estaurine seabed [54, 61, 114, 121]. Thus, when design-

ing a model to simulate coastal hydrodynamics, it is important to apply su�cient

resolution to approximate the nearshore seabed topography. In particular, coarse

mesh resolution in the presence of fine and narrow channelized bed forms will alias

the channel’s cross-sectional profile (Figure 3.13a,b) and lead to the inaccurate com-

putation of transports and fluxes [69, 105]. In the boarder context of mesh generation

techniques for coastal ocean modeling, mesh design heuristics that target resolution

inversely proportional to seabed’s depth [e.g., 153] will also tend to coarsen the resolu-

tion in the center of the estuary in the deepest component of the tidal channel. Thus,

the pre-existing techniques used to build coastal models are ine�cient at adequately

resolving long and narrow channelized bed forms that are critical to conveying water

into and throughout inlets.

An automatic mesh size function Cx that localizes finer mesh resolution in close

proximity to the thalwegs of important estuarine channel morphology was developed

as part of the OceanMesh2D meshing software suite [131]. An example of the estu-

arine channel mesh size function Cx is illustrated in Figure 3.13(c) for the Delaware

Bay estuary located in the MA region. With 44% less vertices than REF in this

subset of the ECGC, the C0.5 mesh represents the cross-sectional area of the deepest

thalweg in the estuary with the same accuracy. In comparison, the L50 mesh is only 8

m deep at the thalweg compared to almost 14 m in the REF and C0.5 meshes. Notice

that other less pronounced thalwegs are not captured by C0.5 due to the application

of finer resolution.

The e↵ects of the estuarine channel mesh size function have been investigated

in Experiment 5 (Cx ) using a mesh size gradation of 35% (G35). A high gradation

motivates the resolution targeting approach because mesh element sizes are relaxed
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Figure 3.13. Panels (a)-(c) show sections of meshes in the Delaware Bay
estuary and their interpolated seabed data to demonstrate the e↵ect of

variably resolving channelized seabeds. Panel (d) illustrates the
cross-sectional profile of a tidal channel that is annotated as a red line in

panel (a).
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quickly away from the channel thalwegs where finer resolution is applied, thus ob-

taining an e�cient mesh. The mesh vertex count in the finest Cx mesh (C1.0) is

increased by more than two-fold from the G35 mesh to approximately 3.1 million

vertices (Figure 3.14d-f), still approximately 60% of the G15 mesh vertex count.

The refinement of the estuarine channel network primarily impacts the M2 eleva-

tion amplitude solution locally in the estuarine regions of the MA and NA subdomains

(Figure 3.14a-c). A consistent reduction in M2 RE from the high mesh size grada-

tion solution (G35) is observed, particularly the 5-10% RE under-prediction error in

large estuaries such as the Chesapeake Bay, Delaware Bay, and Long Island Sound.

The remaining under-prediction error in these large estuaries is under 1-2% RE for

the C1.0 mesh. Some smaller-scale estuarine systems also exhibit reduction to the

RE. For example, the large negative error for G35 (<-5% RE) in Barnegat Bay (c.f.,

Figure 3.1) o↵ the coast of New Jersey is reduced to the point that the error changes

sign for C1.0 (+1-2% RE) (Figure 3.14a-c).

Similarly, the CAFE curves also demonstrate a consistent reduction in M2 and

K1 RE in the comparison zone for the Cx meshes and a substantial reduction of

RE as compared to the solution computed on G35 (Figure 3.15). While none of the

meshes have converged with the application of resolution along estuarine channels, the

sequence exhibits convergence. Despite the approximately 0.7 million vertex count

di↵erence between the C0.5 (2.4 million vertices) and C1.0 (3.1 million vertices)

meshes, their associated solutions perform similarly. In 99% of the comparison zone,

the C1.0 mesh M2 error ranges between -1.6% and +5.5% RE, and -2.8% to +0% RE

for the K1 producing non-converged solutions for the M2 but converged solutions for

the K1. Nevertheless, the narrowing of the error range in 99% of the comparison zone

for the Cx meshes over that of the G35 mesh (-5.0% to +15% for M2) even though

the same 35% gradation is employed is substantial.
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Figure 3.14. Panels (a)-(c) illustrate the error in the M2 elevation
amplitudes for solutions computed on meshes that variably resolve drainage
networks that approximate tidal channels. Panels (d)-(f) indicate the mesh
and interpolated seabed topography onto the mesh vertices. On panels

(d)-(f), the total vertex count is indicated in the visualized portion of the
mesh.
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Figure 3.15. The cumulative area fraction error (CAFE) curves in the
comparison zone for the Cx meshes.

3.4.5 Summary of experiments

3.4.5.1 Predominant variability

A summary of the variation in amplitude errors throughout the ECGC region

in response to changes in mesh resolution from all 15 meshes over the five experi-

ments (Table 3.1) is summarized by taking the standard deviation (�) of RE and

the dimensional error, AE = AID � AREF (Figure 3.16). The greatest changes in

the M2 elevation amplitudes are collocated with M2 phase convergence zones and

amphidromic points (c.f., Figure 3.1), and in some large and small estuaries such as

the Chesapeake Bay and the Deleware Bay. In the Gulf of Maine, NA which is a

resonant basin with a large tidal range (2-10 m), �RE is 1-4% and �AE is well above

2.5 cm for M2. The K1 di↵erences in the Gulf of Maine are also larger than most

other regions. In the GOM which has a small semidiurnal tidal range, �RE is large

in the central region around the convergence zone for M2 but this only corresponds

to less than around 2 mm of dimensional variability (�AE is very small). In general,

the K1 is noticeably less responsive to changes in mesh resolution with �RE barely
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Figure 3.16. Standard deviation of the relative error (�RE) in (a) the M2

and (b) the K1 elevation amplitudes for all 15 meshes from the five
experiments (Table 3.1). Panels (c) and (d) are the same but for the

standard deviation of the dimensional errors (�AE). Note the di↵erences
smaller than the significance threshold defined in this paper are shown and

that the colorbars are not the same between panels (a) and (b).

exceeding 1%. The K1 exhibits the greatest variation in the NA subdomain (Gulf of

Maine), in large estuaries, and throughout most of the GOM. The relatively small

response in the K1 is to be expected given that it is less energetic and has a longer

wavelength than the M2, and it does not typically exhibit resonance on wide shelves

[39].

3.4.5.2 Numerical error versus physical approximation error

An outstanding issue with the results is that the numerical and physical approxi-

mation component of error are intertwined both contributing to the RE observed in
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the experiments. As the approximation of the bathymetry and shoreline boundary

becomes more accurate with the application of finer resolution, the study of conver-

gence in the tidal response becomes challenging as new bathymetric and shoreline

features emerge. From a model design point of view, the isolation of the numerical

component of the tidal error can provide clarity into how to improve the physical

approximation component of error.

To isolate the numerical error in the tidal harmonics studied here, changes in the

physical domain approximation was held constant by refining the relatively lightweight

L250 mesh so that all triangular edges, except for those within 1� of the open ocean

boundary, were bisected about their midpoints producing four new triangles for ev-

ery pre-existing one following a shape-preserving scheme [56]. The bathymetry from

the L250 mesh was linearly interpolated onto this new refined mesh (L250R1) en-

suring that the approximation of the seabed topography are identical between the

two meshes. Further, the bisection of the elements preserves the representation of

the shoreline geometrical features between meshes. The numerical error was then

estimated with Richardson extrapolation technique [19, 128]. In order to use this

approach to estimate numerical truncation error, it was first verified that the lead-

ing order error terms indeed controlled the numerical convergence (i.e., asymptotic

regime), spatial errors were found to be orders of magnitude greater than the time

discretization errors, and the ADCIRC solver in the current configuration is a second

order accurate method in space and time [96].

The Grid Convergence Index (GCI) following [128] is calculated to estimate nu-

merical error with the following formulas:
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GCI[coarse mesh] =
|✏|r

n

(rn � 1)

GCI[fine mesh] =
|✏|

(rn � 1)

n = spatial order of ADCIRC = 2

✏ = 100⇥
|f̃L250 � f̃L250R1|

f̃REF

r =
XL250

XL250R1
= 2 = refinement factor

(3.9)

where f̃L250 and f̃L250R1 are the solutions computed on the original and refined meshes

and f̃REF is the solution computed on the reference mesh. XL250 and XL250R1 denote

the spatially varying mesh sizes throughout the computational domain.

The numerical error normalized by the reference solution for the L250 and L250R1

M2 amplitude elevation is presented in Figure 3.17c,d and compared against the total

error that was calculated from the REF solution (Figure 3.17a,b). There is a similarity

in the numerical and total error estimates particularly in the NA subdomain where

the magnitude of both errors are 3-5% for the L250 mesh, and 1-2% for the L250R1

mesh. However, the estimate of the greatest magnitude numerical error is co-located

with the periphery of the Georges Bank near sharp seabed topographic gradients,

while the total error is spread across the entire Georges Bank. In general, a weaker

reduction in the total error is observed compared to the numerical error. In particular,

the total error is not reduced over the Georges Bank or along most of the SAB and

MAB coastline (Figure 3.17a-b). However, the numerical error is reduced almost

everywhere. For instance, the refinement of L250 to L250R1 reduces the numerical

error estimate in the Chesapeake Bay estuary in the MAB region markedly. However,

the error from the REF solution does not diminish in the MAB region (particularly

the Cheaspeake Bay), which suggests these regions are more responsive to changes in
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Figure 3.17. An estimate of the numerical error calculated via Richardson
extrapolation following [128] obtained by refining the L250 mesh using a
four-to-one refinement strategy to preserve the approximate problem.
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the physical domain approximation (Figure 3.17). Overall, even though the numerical

error has become insignificant (1-2% in magnitude) and converged as the mesh has

been refined, relatively large physical domain approximation errors still remain in the

Cheaspeake Bay, the Long Island sound, and the Georges Bank (⇡1-5%). Thus, a

method that will reduce the numerical error through an iterative refinement strategy

like LTEA may be incapable of improving the accuracy of the solution as compared

to observations even if it minimizes the numerical truncation error.

3.4.5.3 Mesh design combinations

The previously described mesh size functions (Table 3.1) can be used in combina-

tion by taking the minimum of each individual function for each point in a regional

or global domain [41, 131]. Certain combinations of mesh size functions can be re-

garded as more or less e�cient at su�ciently approximating the physical domain.

For instance, if the user were to rely on a low mesh size gradation (e.g., 10-15%),

the estuarine channel mesh size function becomes far less useful because elements in

proximity to the channel are already close to the resolution at the shoreline.

Based on our resolution targeting approach, a sequence of mesh designs with

di↵erent combinations of mesh size functions, all with a high gradation (35%), were

built with the goal of maintaining the accuracy of tidal solution while significantly

reducing the vertex count as compared to the REF mesh:

COMBO1: L50+G35+S20 ! employs 50-m resolution everywhere along the shoreline

(L50), a steep mesh size gradation of 35% (G35), and enhanced resolution

on seabed gradients (S20). A total of 2.3 million vertices.

COMBO2: FS2+G35+S20 ! uses feature size function to vary mesh resolution between

50 m and 250 m along the shoreline while maintaining a minimum of two

elements across the width of the shoreline (FS2), a steep mesh size gradation
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of 35% (G35), and enhanced resolution on seabed gradients (S20). A total of

1.1 million vertices.

COMBO3: FS2+G35+S20+C0.5 ! uses feature size function to vary mesh resolution be-

tween 50 m and 250 m along the shoreline while maintaining a minimum of two

elements across the width of the shoreline (FS2), a steep mesh size gradation

of 35% (G35), enhanced resolution on seabed gradients (S20), and enhanced

resolution along estuarine channel features. A total of 1.3 million vertices.

The idea behind the choice of mesh combinations (COMBOx ) is to proceed from

a more simple design and move towards a more complex design to test the addi-

tive e↵ects, i.e., start with uniform shoreline resolution (COMBO1); use variable

shoreline resolution (COMBO2); add additional resolution along estuarine channels

(COMBO3). COMBO1 begins with a high gradation rate and a large slope function

parameter because of the resolution targeting philosophy that we believe, and which

the experimental results support, lead to more e�cient mesh designs. Figure 3.18

highlighting this targeting approach by illustrating the resolution distribution for the

COMBO3 mesh.

Similar to the error patterns in Experiment 4 using 15% gradation (c.f., Fig-

ure 3.11), the RE in M2 for all COMBOx meshes is reduced significantly from the

G35 mesh, primarily in the NA and MA subdomains (Figure 3.19a-c). Conspicuous

positive values of RE near the Georges Bank in proximity to the M2’s amphidromic

point persists, but this is reduced from 10-21% for the G35 mesh to under 5% for

all COMBOx meshes. The improvement to M2 RE for the COMBOx meshes is also

reflected in their CAFE curves (Figure 3.19d), which perform similarly to the S20

mesh in 99% of the comparison zone for the negative crossing (-1% to -2% RE), but

contain slightly larger RE for the positive crossing (+3% to +4% RE). Overall, the

RE is substantially reduced from the +16% RE positive crossing for the G35 mesh.

Furthermore, the resulting pattern of errors against observations (Figure 3.20) for
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Figure 3.18. Elemental resolution distribution in the COMBO3 mesh,
highlighting how fine resolution is targeted in narrow geometries and along
seabed gradients and estaurine channels (see inset in Fancy Blu↵ Creek).
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Figure 3.19. Panels (a)-(c) depict the error in the M2 elevation amplitude
solution that was computed on the COMBOx meshes. Panel (d) illustrates
a CAFE plot of the error in the comparison zone for the three COMBOx

meshes.

the COMBOx meshes approaches that of the REF mesh (B = 0.01 to 0.04, �2 = 0.03

to 0.05). In comparison, the positive bias and spread of the errors is significantly

greater for the G35 mesh (B = 0.08, �2 = 0.33).

The e↵ect on M2 RE when moving from a uniform shoreline resolution (COMBO1)

to variable shoreline resolution (COMBO2) based on the feature size approach in the

combination meshes is small (Figure 3.19a-b). Di↵erences less than 1% are noticeable

in the Long Island Sound, Delaware estuary, and around the Georges Bank and Gulf

of Maine. Furthermore, the resulting pattern of errors against observations from
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Figure 3.20. A comparison of the tidal constituent root-mean-square-error
(E) for the M2 tidal elevations at 439 tidal gauge observations (c.f.,

Section 3.3.1.2) between a solution computed on the REF mesh (x-axis)
and the COMBOx meshes (y-axis). The normalized bias (B) and spread

(�2) error metrics and the total vertex (N) are indicated. Points that fall in
the blue shaded region have a smaller value of E than the REF solution.
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REF is similar between COMBO1 and COMBO2, although the bias has increased to

from 0.01 to 0.04 (Figure 3.20b-c). Considering that the usage of the FSx shoreline

resolution in COMBO2 leads to 53% fewer vertices than in COMBO1, a small increase

to the bias and variance is expected.

The e↵ect on M2 RE when additional resolution is placed along important estu-

arine channels (COMBO3 versus COMBO2) can be important in localized regions.

The overall picture, as illustrated through the CAFE curves (Figure 3.19d) and the

domain-wide tide gauge error pattern (Figure 3.20), is relatively una↵ected, as evi-

dence by the relatively small change in measured statistics. Predominately, the region

of positive RE over the Georges Bank and the Gulf of Maine is increased by approx-

imately 1% when moving to the COMBO2 and COMBO3 meshes. However, RE is

noticeably reduced in the Delaware Bay, Chesapeake Bay, and Long Island Sound

to under +1% RE in most areas (Figure 3.19b-c). Focusing only on the tide gauges

(n = 108) contained inside the MAB estuaries (Figure. 3.21), the e↵ect of targeting

finer resolution along the channels is further highlighted. The normalized bias is re-

duced from a positive bias in COMBO2 (B = 0.03) to a negative bias for COMBO3

(B = -0.02) inside both estuaries, indicating that COMBO3 is slightly more accurate

than the REF mesh here. The normalized spread of the errors �
2 also reduced but

only marginally.

3.5 Discussion and Conclusions

A series of controlled unstructured mesh resolution experiments were conducted

over a large area of ocean in high-resolution (⇡50 m at the coast) and with a real-

istic shoreline boundary has been achieved through an automatic mesh generation

approach facilitated by the OceanMesh2D software [131]. The sensitivity of the

barotropic tidal response to unstructured mesh resolution was investigated by con-

trolling the distribution of mesh sizes according to functions of a priori seabed and
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Figure 3.21. The complex root-mean square error (E) for the solution
computed on, (a) the COMBO2 mesh, and (b) the COMBO3 mesh

(includes enhanced resolution along estuarine channels), at 108 tide gauges
in the Chesapeake Bay and Delaware Bay estuaries that are illustrated in
panel (c). Various error metrics are indicated in the panels (a) and (b).
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shoreline geometry information. It is noteworthy to mention that the whole process

was scripted and thus automatic using the mesh generator suite. All meshes were

numerically stable with a time step of 2 s without requiring post-processing hand-

edits (vertex re-location, element re-shaping, or bathymetric smoothing), or ad hoc

limiters (e.g., https://wiki.adcirc.org/wiki/Fort.13_file#Elemental_Slope_

Limiter) and dissipation attributes.

The results from Experiments 1 through 5, and our examination of the e↵ect

of numerical error versus physical domain approximation error allow us to attempt

an answer to the question we posed in Section 4.2: “a) How does the simulation

of barotropic tides respond to the representation of shoreline geometry and seabed

topography in the ECGC region? What are the sources of error and how do these

contribute to the measured di↵erences?”.

In coastal ocean modeling applications, the shoreline resolution determines the

predominate computational expense of the model. We explored ways to quantify

the e↵ect of simplifying the shoreline’s representation in the mesh in Experiment 1)

by coarsening the resolution from 50 m to 250 m and (Experiment 2) automatically

varying resolution according to the width of shoreline features (feature size function).

Coarsening the minimum resolution (Lx meshes) noticeably decreased the total area

of the mesh by decimating fine scale shoreline features like embayments, headlands,

and coves leading to a reduction in the total number of vertices up to a factor of

five. However, the associated variation in the tidal elevation amplitudes over most of

the domain was comparatively small, the relative errors against the REF solution in

99% of the domain did not vary by more than 2%, although noticeable di↵erences are

noticeable in the tail of the CAFE plots corresponding to highly localized regions.

Experiment 2 demonstrated that the feature size approach FSx preserved the area

enclosed by the shoreline of the mesh using the 50-m uniform shoreline resolution

(see L50) while requiring approximately half the number of vertices. Further, the
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relative errors from the REF solution for FS2 showed a significant improvement over

L250 in the tail, comparable to L50.

An important point is that the constraints from the sizing functions interact. For

example, the increase in feature size parameter from 2 to 8 improves the representa-

tion of nearshore seabed topography (c.f. Figure 3.7) by using finer resolution across

the width of the shoreline feature, but the higher feature size parameter does not

improve the ability to resolve the complexity of the shoreline (c.f. Figure 3.4). Thus,

our recommendation is that meshes intended for high-resolution tidal modeling to be

constructed with a feature size approach (also see Conroy et al. [41]) with maximally

two or three vertices across the shoreline’s width instead of applying a minimum res-

olution uniformly along the shoreline [29, 85]. Note that in the feature size approach,

a consideration should be taken to make sure that the element sizes along the shore-

line cannot become too coarse. In this work, we applied a five-to-one ratio upper

bound so that the element sizes do not exceed 250 m given that the length scales of

the physical processes are still controlled by the proximity to fine scale shoreline ge-

ometry here, and coarse element sizes nearshore may not be conducive to accurately

model other coastal processes that were not considered in this study such as wave

setup induced through wave breaking [80].

Experiment 3 demonstrated how increasing the gradation rate can negatively im-

pact the approximation of seabed topography in the mesh and the simulated accuracy

of tidal solutions were highly degraded. The mesh with the highest gradation (G35)

was the worst performing mesh in terms of the M2 and K1 relative error values out

of all 15 meshes in the five experiments. The e↵ect of increasing the gradation is

likely to have increased the numerical error ([71]) in addition to the physical do-

main approximation error making the determination of the root cause of the poor

performance challenging. However, experiment 4 clearly demonstrated that plac-

ing resolution along seabed gradients (⇠1 km along the continental shelf break and
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slope) improved the accuracy of tidal solutions, which is in agreement with prior

works [37, 98, 153]. At the same time, increasing the gradation rate coarsened the

representation of the continental shelf break as resolution sizes would grow faster

from the shoreline. Thus, it is likely that our application of resolution along seabed

gradients reduces the numerical error as large gradients in the solution are co-located

with steep seabed topographic gradients [e.g., 72, 74]. Our recommendation is the

use of a high value for the slope mesh size function (S10-S20) in combination with a

high gradation rate (G35) to o↵set the increased gradation’s rate negative impacts on

both error sources, while largely reducing the total number of vertices in the mesh.

Experiment 5 demonstrated that the approximation of the seabed topography

across some estuaries in the Mid-Atlantic region (Cheaspeake Bay and Delaware Bay)

could be improved by using the estuarine channel mesh size function to place targeted

high-resolution zones along submarine channels inside and leading into estuaries. In

estuaries that are characterized by well-defined submarine channels that occupy non-

trivial portions of the width of the estuary, it is important to ensure that adequate

resolution is placed along these channels so that the total cross-sectional area and

local ocean depth minima are preserved. Indeed, the application of progressively

placing finer mesh resolution along the estuarine channel network (extracted using

an upslope area computation on the DEM) was shown to reduce tidal error metrics as

compared to both the reference solution and measured data. We remark that other

mesh size heuristics, such as the slope mesh size function and using finer resolution

along the shoreline with a low gradation rate can implicitly, but ine�ciently, capture

these submarine channel features. Thus, the application of the estuarine channel

mesh size function motivates the usage of a higher mesh size gradation so as to focus

resolution only on the submarine channels allowing us to e�ciently discretize the

estuarine environment.

Considering the variations in the total vertex count and the tidal solution errors
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throughout Experiments 1 to 5, an attempt was made at answering “b) recommend-

ing a set of mesh size functions that place resolution according to shoreline geometry

and seabed topography to e�ciently discretize coastal ocean domains that approx-

imately reproduce simulation results from an extremely well-resolved mesh” (from

Section 4.2). We tested the performance of mesh design strategies that involved us-

ing a steep mesh size gradation rate (G35) in combination with the targeted mesh

sizing functions along the shoreline (FSx ), sharp topographic gradients (Sx ), and

estuarine channel systems (Cx ). Three combination meshes (COMBOx ) that ranged

from 1.1 million to 2.3 million vertices were generated. Overall, all COMBOx meshes

performed similarly to the REF mesh both directly and as compared to measured

tide gauge data. The additive e↵ects of multiple mesh size functions reduced the

error metrics largely, especially in the comparison to the G35 solution, which had a

noticeably degraded solution without the usage of other sizing functions (in particular

the slope function) used in the COMBOx sequence.

Echoing our findings from Experiment 1, the COMBO2 mesh utilized a small

value of the feature size function parameter (FS2) and had approximately half the

vertex count of COMBO1 (uniform shoreline resolution) with little increase in relative

error, thus the FS2 is considered an e�cient mesh design choice. However, estuarine

channels are more likely to poorly represented with the high gradation (G35) and FSx

design combination as mesh sizes will become coarser in certain regions depending

on the cuspate shape of the shoreline. Our conclusion is the 15% increase in the total

vertex count associated with the addition of the C0.5 component of COMBO3 to

better capture estuarine channels, can be considered a good investment particularly

since the solution in nearshore estuaries of high importance is improved; even to

a point beyond the performance of the REF mesh (e.g., Figure 3.21). Our results

imply that the 250-m bounded blanket resolution applied across the large estuaries in

reference solution is coarser and less e↵ective than the targeted resolution that follows
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the channelized seabed in the C0.5 mesh size function. In fact, a key drawback of mesh

designs that apply uniformly fine zones of resolution throughout regions of similar

ocean depths (the wavelength-to-gridscale heuristic [e.g., 152] is that there is less

flexibility to more finely capture targeted seabed features and shoreline constrictions

due to the baseline expense of the model. In many regions, the application of targeted

refinement can produce more finely resolved solutions in localized areas of importance

with far fewer vertices.

Through the combination of the constraints imposed by a set of mesh size func-

tions (COMBOx meshes), the vertex count was reduced by nearly an order of magn-

tiude from the reference mesh and had a converged solution with tidal error metrics

in 99% of the East and Gulf Coast waters ranging from -2% to +1%. For instance

COMBO3 (1.3 million vertices) had eight times fewer vertices as reference (10.8 mil-

lion vertices). These results suggest that pre-existing operational models may be

largely ine�cient, over-discretizing in some areas and under-discretizing in others as

pre-existing models use nearly uniform resolution nearshore following the wavelength-

to-gridscale sizing heuristic. For example, the Hurricane Surge Operational Forecast-

ing system (HSOFS) mesh [146] used in real-time predictions employs a minimum

shoreline resolution of 250 m and contains 0.75 million underwater vertices, which is

similar in number to our L250 mesh. In contrast, the COMBO3 mesh, which spans

the same ECGC study region, utilizes up to five times finer resolution nearshore (50

m compared to 250 m) and up to ten times finer resolution along the continental

slope (1 km compared to 10 km), with only 1.6 times the total number of underwater

vertices than HSOFS.

We highlight that an important first step in the coastal model development pro-

cedure is to construct a mesh that minimizes the physical domain approximation

error before model tuning occurs vis-a-vis varying bottom friction, other dissipative

coe�cients, viscous models, and manually altering ocean depths and shoreline form.
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As was evident in this paper, by improving the accuracy of the approximate problem

(i.e., the representation of the shoreline and seabed topography as per the available

geospatial data used), the tidal solutions exhibited convergence towards a reference

solution. The primary variation in the M2 (c.f., Figure 3.16) tended to coincide with

zones of the ECGC in which the bottom friction coe�cient are typically modified

[143]. For instance, since the Chesapeake Bay has a muddy seabed floor, the friction

coe�cient, Cf is often set low a value (Cf ⇡ 0.001) and this is found to improve

comparisons with tidal harmonics [61]. However, our results indicate that the the M2

tide in the Chesapeake estuary is largely sensitive to mesh design with changes on

the order of 10% between the mesh design variations explored here (c.f., Figure 3.16).

It is thus likely that the bottom friction application procedure may be tuned incor-

rectly depending on the local mesh design; for instance, depending on the complexity

of the estuarine network. In this estuary, the representation of the axis-aligned center

channel was largely related to an underprediction error in the M2 tidal constituent.

Hagen et al. [72, 73] explored the distribution of mesh resolution for 1D models

of the continental shelf and 2D tidal models through the LTEA method with the

goal to reduce the overall vertex count of a tidal model using a posteriori truncation

error indicators. A limitation of the LTEA approach is that it does not consider

the contributing e↵ect on the physical domain approximation error that we analyzed

in this study, and relies on an existing mesh to begin with. Our feature-driven a

priori approach allows for meshes to be generated without the need to generate

a finely resolved mesh and iteratively reduce the vertex count through simulations

of the tidal solution. Moreover the feature-driven approach is more generalizable

to nontidal geophysical flows (e.g., tsunamis, surge, sub-tidal dynamics and wind

waves). Nevertheless, an interesting future direction of this work would be to take a

mesh that produces a low approximate error (e.g., COMBO3) and apply the LTEA

method to further reduce the vertex count and/or reduce the numerical truncation

135



error. This could be particuarly useful to better understand the source of the error

around the Georges Bank and the Gulf of Maine, NA near the M2 amphidromic point,

which conspicuously appears in nearly every mesh design.
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CHAPTER 4

DYNAMIC LOAD BALANCING FOR PREDICTIONS OF STORM SURGE AND

COASTAL FLOODING

4.1 Overview

This chapter improves upon the e�ciency of simulating coastal flooding on un-

structured meshes using a dynamic load balancing technique. Computational models

can accurately predict the flooding of coastal regions due to tropical cyclones and

other storms, but they have the potential for workload imbalances. Large floodplains

are allowed to wet and dry during the storm, and thus the workload for wet regions

may not be distributed evenly over the computational resources. In existing mod-

els for real-time prediction of and long-term design for coastal flooding mitigation,

their parallel implementations are based on a static paradigm in which a computa-

tional mesh is partitioned into sub-domains at the beginning of the simulation. We

demonstrate that the static paradigm can be sub-optimal in detailed coastal flooding

calculations that involve large, normally-dry, low-lying areas that could be inundated

during a storm event. In this case, many processors are not fully utilized from a

computational perspective as many degrees-of-freedom remain in a dry-state with

a zero-valued solution. We integrate a capability to dynamically rebalance compu-

tational work into a state-of-the-art, shallow-water circulation model to reduce the

parallel execution times associated with calculations of extensive flooding driven by

tidal and meteorological forcings. Our development is based on dynamically parti-

tioning the decomposition of mesh during run time so that the that the computational
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load is determined by the degrees of freedom in wetted areas. The implementation

has a low overhead cost, and we demonstrate the flooding simulations can achieve

speed-ups 8-45% over the static case. This chapter will be submitted in a modified

form to the journal Computers and Geosciences.

4.2 Introduction

In horizontal two-dimensional (2D), unstructured-mesh, finite-element modeling

of wind-and tidally-driven coastal circulations, a portion of the computational domain

is included above the local mean sea level (LMSL) state to simulate coastal flooding.

The computations use an unstructured mesh composed of triangular elements with

highly-variable sizes to represent the large horizontal scale separation (i.e., O(10

m)-O(100 km)) in processes that occur in coastal flooding situations. Predictions

with these unstructured meshes are used to provide crucial information for coastal

hazard assessment and design [CSTORM Project; 38] and emergency management

operations [21, 22, 53, 140].

A widely-used model for hurricane-related, coastal flooding predictions is the AD-

vanced CIRCulation hydrodynamic model [ADCIRC; 96], which utilizes the finite-

element method to solve the shallow-water equations on an unstructured mesh with

triangular elements. The coastal ocean is discretized with millions of elements with

varying resolution to represent the development and propagation of waves, tides,

and surge from the open ocean to the nearshore and over complex coastal topog-

raphy (Figure 4.1). In the region of focus, the mesh often contains an extensive

floodplain extending to an elevation of 10-m to 15-m above mean sea level. On the

floodplain, high-resolution elements range in size from 10-m to 250-m and enable an

accurate representation of the fine horizontal length scales and complex land cover

variability that control coastal inundation patterns [e.g., 50, 60, 78, 134]. Thus, many

degrees-of-freedom (DoFs) in the modeling system are located overland. In the Hur-
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Figure 4.1. Panel (a) is an illustration of a high-resolution finite element
mesh in which the bathymetry/topography is shaded that is used in the
computation of coastal flooding. In panel (b), a histogram illustrates the
number of degrees-of-freedom (DoF) per bathymetric depth range below
sea level for (a). For the purpose of this figure, the overland category is
classified as greater than 0.10 m above sea level, nearshore is less than or
equal to 0.10 m and greater than -50 m, and deep is less than or equal to

-50 m.

ricane Surge Operational Forecast System (HSOFS) mesh [146] used for real-time

predictions (https://coastalrisk.live/; [59]), approximately 55% percent of the

vertices are above the mean sea level state at initialization of the simulation. The

transient and episodic nature of hurricane flooding further imply that, although the

overland regions are included due to uncertainty in the magnitude and location of

potential storms, the majority of overland DoFs will never be flooded during any

given simulation.

The computationally expensive aspect of modeling coastal flows over land have

motivated the development of many numerical schemes and approaches [6, 16, 33, 35,

93, 144]. One approach is to start the calculation with an initially coarse mesh and

then adaptively refine the mesh as the event approaches and propagates throughout

the domain. Adaptive mesh refinement methods perform well for the simulation of

transoceanic tsunamis and the associated coastal flooding, in which the background
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state is quiescent before the event occurs [16, 93]. However, for coastal circulation

models that are concerned with total water level predictions from hurricanes and

other storms, the background tidal signal continuously interacts with the irregular

geometry that characterizes the shoreline boundary and complicates mesh refinement

strategies. For example, the representation of a narrow waterway that conveys tidal

flow will be lost at coarse levels of refinement distorting the nearshore circulation

patterns.

Multi-scale approaches [e.g., 144] also have been shown to reduce wall-clock times

for detailed coastal flooding simulations. However, these approaches require an ex-

tensive development of meshes, each using various levels of horizontal resolutions at

di↵erent cartographic scales and then coupling paradigms to merge the solutions.

Methods such as sub-grid scale modeling techniques [e.g., 32–34] are also capable

of cost-e↵ectively resolving the floodplain by modeling wetting/drying through a

porosity function. However, sub-grid scale methods have not been applied yet to

the widely-used unstructured finite-element and -volume software suites that can

already seamlessly produce coastal ocean circulation predictions across scales [e.g.,

35, 62, 96, 160]

Considering the challenges and recognizing the previous e↵orts in unstructured

mesh development for coastal flooding studies during the past two decades, an ap-

proach is designed to reduce the computational cost of modeling the floodplain with

high-resolution, unstructured elements using the ADCIRC solver. Our approach does

not require any alteration to pre-existing meshes or the numerical schemes used in the

solver and keeps static the connectivity of the mesh, which altogether minimizes its

invasiveness. The qualities of our approach ensure that pre-existing solutions can still

be reproduced, but with a gain in computational e�ciency and with a minimal e↵ort

by the user. The approach dynamically redistributes the computational workload

between processors in a distributed computing environment using message passing to
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reflect the time-varying movement of the wet/dry boundary during a coastal flood.

For the approach to result in a net speedup of the simulation, (1) the re-balancing

of work must be fast relative to the work savings; and (2) there must exist a su�-

cient number of dry-state DoFs to generate a work savings. The former consideration

creates a significant software engineering problem to implement capabilities in pre-

existing static solvers, such as ADCIRC, because their timely execution is vital to

the success of the approach.

To facilitate dynamic load balancing in an application like the ADCIRC solver, the

software design must support the ability to e�ciently relocate data and their associ-

ated dependencies during runtime. Software toolkits such as Zoltan [24], Charm++

[81], and PetSC [12] have been developed to be integrated into solvers with this

purpose in mind. Often these packages are combinations of algorithms written in

C and C++ and are employed in parallel unstructured and/or adaptive finite ele-

ment computations. In this study, we rely on the Zoltan toolkit to provide essential

functionality to the application.

The rest of this article is organized as follows: first, we describe our methodology

to reduce the computational cost of the floodplain by integrating the Zoltan toolkit

within ADCIRC and developing an algorithm to reduce the cost of the floodplain.

Then we describe the e↵ect of the load balancing application on the computational

performance and behavior of ADCIRC when using an idealized case study. Finally,

we apply the approach to a models with realistic topography and setup. The paper

concludes with a discussion on the key findings.
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4.3 Methods

4.3.1 ADCIRC Hydrodynamic model

The ADCIRC model solves the non-linear Shallow Water Equations (SWE) using

the Generalized Wave Continuity Equation (GWCE; [86, 100]) in parallel using a

Single Program Multiple Data (SPMD) approach with the message passing interface

(MPI). The SWE are discretized by using a continuous Galerkin (CG) finite element

(FEM) scheme in space and a finite di↵erence scheme in time, and the method is

formally second-order accurate [96]. For each simulation timestep, the GWCE is first

solved to calculate the water-surface elevation (WSE) by either an implicit Jacobi-

Conjugate gradient (JCG) method [70]) or an explicit mass-lumping method [145].

The WSE are then used to compute the elemental wetting/drying through the ful-

fillment of a set of logical conditions [97]. Finally, the depth-averaged momentum

equations are solved semi-explicitly (with the exception of the Coriolis term) using a

time-centered finite di↵erence scheme.

ADCIRC represents the wetting and drying process on an elemental basis, in

which elements must either be fully wet or fully dry [97]. A thin film of water of

thickness Hmin is applied initially on all dried elements, and a set of criteria must

be satisfied for an element that was previously dried to become wet. The criteria

require that (i) the local WSE must exceed the WSE of the highest elevated vertex

in the dry element by a minimum height of Hmin; and (ii) the WSE in the adjacent

wet elements must be high enough to create a WSE gradient su�cient to overcome

the resistance from bottom friction. For an element to remain classified as wetted,

the local WSE must be a minimum height of Hmin above the WSE of all vertices in

the element.

The wetting/drying process creates a moving free surface boundary in the com-

putational domain that can move at most one element per timestep, otherwise the
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scheme will go numerically unstable [49]. The wet/dry boundary (W/D) can be lo-

cated through the vertex-to-element connectivity by comparing the number of wet

elements to which a vertex is connected, to the total number of elements to which the

vertex is connected. If the number of connected wet elements is less than the total

number of elements, then the vertex belongs to the wet/dry boundary. It should be

noted that the algorithm used in ADCIRC performs well for advancing the wet/dry

boundary landward; however, it often exhibits di�culty in the drying condition when

the wet/dry front recedes, as small patches of elements that persistently remain wet-

ted are created [103].

4.3.2 Load balancing strategy

Our strategy to reduce the cost of representing the floodplain with high resolution

elements involves trading a computational workload balance for a memory imbalance.

In this strategy, the majority of the dry-state DoFs become located on a subset of

processors, which indirectly reduces the size of subdomains that own the majority of

wet-state DoFs. When the dry-state DoFs are located on a subset of the processors,

their computational work can be reduced in calculations through a rearrangement of

data in memory that will be explained in the subsequent section.

The load balancing strategy divides the computational domain into an o✏ine and

online component in which the o✏ine component is located overland and the online

component represents the underwater portion of the domain (Figure 4.2(a)). At the

start of the simulation, the wet/dry boundary is located near the local mean sea level

state, which enables the majority of dry-state DoFs to be located in the o✏ine portion

and a work savings to be obtained through our approach (Figure 4.2(a)). At some

point in the calculation, the computational workload may need to be rebalanced as

the movement of the wet/dry boundary begins to reach the boundary of the o✏ine-

state. When the problem rebalances, the simulation becomes divided in time into
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a computational and rebalancing phase. The rebalancing phase involves computing

a new data distribution between processors, migrating the data to reflect the new

distribution, and restarting the calculation phase. The combination of a rebalancing

phase with the subsequent calculation phase is termed an epoch. In the current

implementation, the calculation and rebalancing phases do not overlap in simulation

time.

The increase in computational load each epoch occurs in a stepwise fashion as

the storm nears its landfall or reaches peak intensity. The storm-induced flooding

increases the frequency of the rebalance events and at the same time shortens the

duration of each epoch (Figure 4.2(a)). The transition from one epoch to the next

is accomplished through a partitioning phase. In the case that all DoFs becoming

wetted, the load and thus the speed of the parallel application become approximately

equivalent to that of static ADCIRC. After the storm makes landfall, the wet/dry

boundary recedes back to the mean sea level state, and the number of dry-state DoFs

increases enabling the load balancing strategy to reduce the total number of DoFs

and acclerate the calculation.

4.3.3 Mesh partitioning

For the assignment of mesh data (elements and vertices) to processors, the ele-

ments of the unstructured mesh are represented as an undirected graph. The tri-

angular element’s centroid is a node of the dual graph and it is assigned a weight

proportional to its computational expense (Figure 4.3).

To partition the graph of the unstructured meshes used in the calculation of

coastal flooding, the ParMETIS V4.0.3 program is used with the implementation of

the K-way Multi-level graph decomposition algorithm [83]. ParMETIS’s Part K-way

algorithm is called via Zoltan’s interface [24]. In our implementation, elements and

their associated vertices belong to a set of k-partitions that are termed subdomains in
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Figure 4.2. An illustration that depicts some concepts in our load
balancing approach. In panel (a), the time evolution of the computational
load is shown for a Hurricane-driven coastal flooding event. The shaded
grey bars indicate epochs in which a fraction of the total number of DoFs
are turned o✏ine. In panels (b) and (c) the computational domain with
blue denoting portions of the domain underwater and green overland is

shown before the Hurricane (b) and after the Hurricane makes landfall (c).
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Figure 4.3. A triangular finite element. Triangle-based connectivity
showing the vertex adjacency in solid black lines and the triangle adjacency

otherwise referred to as the dual-graph in dotted-black lines.

which each k
th subdomain is owned by one processor. A vertex or element is a termed

a border if one of its adjacent neighbors is on another subdomain. A border element

or vertex is further classified as a ghost if its owned by more than one processor. If

a subdomain contains at least one element or vertex that is also owned by anther

processor, then those two subdomains are neighbors to each other. If a subdomain

contains vertices that cannot be all be visited by traversing either the vertex-to-

vertex or element-to-element connectivity breadth or depth first search manner from

a given starting vertex or element located in the subdomain, the subdomains are

termed discontiguous.

4.3.3.1 Parallel Mesh Partitioning Algorithm

An overview of the parallel mesh decomposition steps are outlined in Fig. 4.4.

Each processor participates in the partitioning algorithm and operates on a compo-

nent of the global mesh.

The algorithm begins by calling ParMETIS to divide the weighted graph of the

mesh. Lists are generated that indicate which data (vertices and elements) need to

migrated between processors to create the updated data decomposition. ParMETIS’s
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Figure 4.4. The parallel mesh partitioning algorithm. proc stands for
processor.
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scratch-remap scheme is utilized to decompose the mesh by partitioning the graph to

balance the load but also to minimize migration overhead by remapping the data own-

ership to reflect the existing data owernship [88]. The scratch-remap type scheme to

partition the graph is in contrast to di↵usive-based approaches that di↵use overweight

processors to their neighboring subddomains [e.g., 133]. For our problem’s configu-

ration in which a large amount of imbalance occurs in localized overland zones, we

find the scratch-remap scheme can produce lower edge cuts and better minimize the

load imbalance as compared to the multilevel di↵usion type approach. However, the

di↵erences in timing between either di�usion or scratch-remap schemes are marginal

in comparison with the overhead spent performing the logic and data migration to

achieve the updated decomposition. In other words, the majority of time spent rebal-

ancing is not spent calling ParMETIS’s graph decomposition algorithm and thus a

preference is given to producing subdomains with low edge cuts which tend to occur

moreso with the scratch-remap approach.

The elements are first migrated between processors so that each element of the

mesh is owned by only a single processor. The migration of elements implicitly forms

the vertex ownership among processors since the three vertices of each element must

also be local to the processor in order to form a conforming mesh necessary for CG

FEM. A single layer of shared vertices and elements on the border of the subdomains

must also be created to enforce the necessary continuity requirements required by the

CG FEM. At the end of step 2, only the higher-numbered neighboring partition owns

the vertex on the border of a sudomain. In step 3, these shared vertices on the border

of the subdomain are localized on the lower-numbered neighboring processor. Finally,

the connected elements to any localized vertices in step 3 are imported to finish the

formation of the halo ghost zones creating a single layer of halo ghost vertices and

elements that border each subdomain (Figure 4.5(b)).

In order to facilitate the steps that involve data migration between processors,
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Zoltan’s unstructured communication library is used [45]. A sequence of call-back

functions that (1) determine the sizes of data to be migrated between processors,

(2) pack the data-to-be-migrated, and (3) unpack the received data on their new

processors are registered and execute in a procedural manner with each migration

step (Fig. 4.4;[24]). A benefit of Zoltan’s unstructured communication software is

that it enables a local inter-processor communication pattern whereby each proces-

sor shares its information only with its neighboring subdomains (Figure 4.5(a)). The

local communication pattern is e�cient since messages are only sent to the neigh-

boring processors, not every processor in the communicator, which would be the

case with an all-to-all reduce operation. The local communication pattern is used in

the partitioning phase to exchange the location of the moving wet/dry boundary, to

decompose boundary conditions, and to form halo ghost zones.

Distributed data directory’s are used to query the processor ownership of vertex

and elemental data after each migration step has occurred. A distributed directory

operates like two hash tables that are distributed across a number of processors [45].

The first hash table determines the processor that owns the data and the second hash

table determines the location of data on the processor that owns the data.

The performance of the parallel partitioning algorithm is overall represented in

the timing statistics that are later described. The general performance and time

complexity of the parallel partitioning algorithm is challenging to assess given the

large variety of potential problem configurations in the ADCIRC model (i.e. varying

amounts of boundary conditions).

4.3.3.2 Elemental Weighting Scheme

A weighting scheme is applied to the elements of the mesh (dual graph) to reflect

the disparity between the associated computational work with the dry-state and wet-

state DoFs. To enable more control over what component of the domain is included or
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Figure 4.5. A local communication stencil is indicated in panel (a). The
subdivision between each processor’s data is demarcated in red. In panel
(b) the ghost zones that are composed of duplicated elements and vertices

on each processor’s boundaries are shaded in a contrasting color.

excluded in the calculation, elements and vertices are given an o✏ine or online status.

The online and o✏ine status is based on a set of user-defined criteria. Elements that

have an o✏ine status must be in a dry-state and are weighted with a value of 0,

whereas online elements are weighted with a value of 1. To reflect the reduction in

interprocessor communication associated with o✏ine elements, dual graph edges that

connect two o✏ine elements (i.e., elements share an edge) are weighted with the value

1, whereas dual graph edges that connect either two online elements or one online

element to an o✏ine element are weighted with a relatively larger value (1,000 in our

implementation). The large disparity in edge weights between the online and o✏ine

edges represents the near zero communication overhead incurred between dry-state

and o✏ine-state DoFs.
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4.3.3.3 Loop Rearrangement

Data in memory is rearranged according to the cost of the dry-state DoFs (Fig-

ure 4.6). Specifically, the memory location of elemental and vertex data is rearranged

based on the online or o✏ine status of the data. Online elements are placed contigu-

ously at the beginning of the array and o✏ine elements are then located contiguously

after the last online element. In this memory arrangement, the number of loop iter-

ations can be trivially reduced by the number of o✏ine elements on each processor

because the online-state and o✏ine-state data is contiguous in memory.

In order to produce a conforming finite element mesh when the elemental loops

are reduced in length, an online element’s vertices must be located in the online-state

portion of the array. The conforming property of the mesh is ensured by iterating

through the online-state element-to-vertex connectivity table and placing the online-

state vertices at the start of the array while making sure that the vertices are rep-

resented no more than once in memory. The process is repeated for the o✏ine-state

portion of the element-to-vertex connectivity array but placing these o✏ine-state

vertices after the last online-state vertex.

Before the calculation begins, the elemental and vertex loop extents are set to

the memory location of the online element and online vertex whose adjacent memory

location is classified as o✏ine-state. Note that mesh data located in the o✏ine-

state portion of the array may represent dry-state boundary conditions or halo ghost

structures that are used for parallelism, however,

To trigger a rebalance event during a coastal flood, the set of vertices that are

shared between the boundary of the online-state and o✏ine-state portion of the mesh

(termed checkpoint vertices and illustrated in Figure 4.2) are checked for wetting

every simulation timestep. If any checkpoint vertex is wetted on any processor, the

simulation must temporarily stop and rebalance the data by executing the parallel

partitioning algorithm (c.f., Section 4.3.3.1) and rearrange the vertex and elemental
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loops.

4.3.4 Rebalance strategies

The frequency of rebalancing events can influence the overall timing statistics of

the simulation. In our application, the approach may fail to produce speed ups if

the simulation requires a rebalance event too frequently because the time required to

complete one rebalance can become comparable to the time spent in the calculation

phase. Thus, a bu↵er zone of elements and vertices between the online and o✏ine

portions of the computational domain must be created to ensure the time spent

rebalancing is significantly less than the time spent computing. While the formation

of the bu↵er zone will inherently lead to a suboptimal speed up by leaving a number of

dry-state DoFs in an online-state, we find that it enables the approach to be feasible

for realistic total water level and flooding problems that typically contain a periodic

flooding/drying signal associated with the tides and would otherwise demand nearly

continuous rebalancing.

In the context of the modeling coastal flooding, the criteria for configuring the

width of the bu↵er zone is based on the location and movement of the wet/dry

boundary. The key assumption in the formation of the bu↵er zone is that the solution

behaves in a physically realistic manner and does not exhibit numerical artifacts or

instabilities. In the current implementation, the definition of the criteria to determine

online and o✏ine state vertices are globally defined (i.e. among all processors). The

following three rebalance strategies are pursued:

1. Distance: If the vertices’ nearest distance from the wet/dry boundary exceeds

a user-defined threshold BUFDIS in geographical degrees, the vertex is set to

an o✏ine-state. If the three vertices of the element all exceed BUFDIS, then

the element is set to an o✏ine-state. The key assumption here is that locations

in close proximity to the shoreline are most likely to be flooded.
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Figure 4.6. A schematic of loop rearranging applied on a patch of elements.
The elemental rearrangement leads to the vertex rearrangement since the
three vertices of each element that are online must be iterated over in

vertex-based loops. The e↵ect on the elemental arrays and vertex arrays on
the ordering through color highlights along with the global ID numbering.
The portion of the array that is not looped over in the new reordering is
referred to as “clipped” and these data are shaded in light blue. The

vertical black bar denotes the end of the array.
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2. Topographical: The vertices’ elevation must be located above a minimum ele-

vation greater than a user-defined value BUFDP in meters above the model’s

geoid. A key assumption here is that areas that are low-lying are most likely

to be flooded. In practice, the selection of the BUFDP value is motivated by

the local inter-tidal range.

3. Solution-driven: The value of BUFDP is elevated periodically to prevent fre-

quent rebalancing events. In our experiments, if a rebalance event occurs less

than four simulation hours since the previous one, the elevation criteria is raised

by 10 cm. The period of simulation time to wait to elevate the bu↵er is se-

lected by considering the overhead from rebalancing (1-3 seconds per event),

time scales of hurricane-driven coastal flooding events (6-18 hours), and the

computational performance of ADCIRC [145].

4.3.5 Performance metrics

A set of statistics are calculated to assess the performance of ADCIRC+DLB.

The total wall-clock time T of the simulation is divided into the sum of the time

spent computing TC and the time spent rebalancing TRB:

T = TC + TRB (4.1)

where TC and TRB are summed over all the epochs. TRB represents the time spent

performing the parallel partitioning algorithm (Section 4.3.3.1).

The performance of a parallel application is dependent on the load imbalance as

it determines the speed of the slowest process. The load imbalance can be strictly

defined as the ratio of the maximum load L as compared to the average load calculated

over all processors:
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RIMB = 100⇥ (
Lmax

Laverage
� 1) (4.2)

where L is calculated as the number of online-state vertices per processor. Note

here I have decided to measure the number of vertices per processor to represent

the computational load despite that I partition the elements of the mesh. Since

the calculation inside ADCIRC depends on both elements and vertices, ideally both

the number of elements and vertices per processor should be well-balanced for an

e�cient calculation. However, a focus is placed on the distribution of the vertices as

this is not directly constrained by the graph partitioner when it partitions the mesh.

For e�cient parallel computing, all processors should maintain an equal load ideally

having an RIMB = 0% to ensure that the time spent idle is at a minimum. With the

usage of ParMETIS, the desired imbalance factor option for partitioning the mesh is

set to RIMB  1.0%.

Another consideration for e�cient parallel processing is to minimize the inter-

processor communication volume (i.e, total number of messages by their size). The

inter-processor communication volume is approximated through the surface-area-to-

volume (SV) ratio of the subdomain, which approximates the relative amount of

communication cost as compared to the computing cost:

SV = 100⇥
number of halo ghost vertices

total number of vertices
(4.3)

The number of halo ghost vertices in Eq. 4.3 is influenced by the shape of the sub-

domain and whether the subdomains are connected in the computational domain

(contiguity). As the number of vertices per processor is reduced, SV will increase

in an analogous manner to the increase in the surface-area of water droplets as the

volume of the droplet is reduced.

To measure the time savings attributed to DLB, the speed-up factor over the
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static version of the code is calculated as:

speed up = 100⇥
(TDLB � TStatic)

TStatic
(4.4)

In which TDLB is the total wall-clock time for a given simulation computed with

the DLB enabled and TSTATIC is the total time to compute the simulation-only

component of the run while ignoring the time spent pre-processing files using the

static version of ADCIRC. An estimate of the speed up factor is calculated by dividing

the maximum number of resident vertices on all processors by the number of total

vertices in the problem divided by the total number of processors utilized.

4.4 Experimental results

All calculations were run on the Aegaeon computer cluster located at the Uni-

versity of Notre Dame’s Center For Research Computing (https://crc.nd.edu/).

The Aegaeon cluster contains 83 compute nodes, and the machine in total has 1,992

processors. Each compute node contains 72 GB of random access memory that is

shared among each node’s 24 processors. The nodes are connected via a high-speed

56 GB Infiniband network that facilitates message passing between processors.

Both ADCIRC v53 and ADCIRC v53 + Dynamic Load Balancing (ADCIRC+DLB)

source codes are compiled identically using Intel’s ifort 17.1 compiler with the -O2

optimization strategy and the MVAPICH implementation of message-passing. In all

simulations, file input/output was minimized by disabling the output of global output

files and file logging. ADCIRC requires that the input files for parallel simulation be

pre-processed using the program ADCPREP. In contrast, ADCIRC+DLB processes

the input files in parallel and in memory during the start-up period of the calculation.

All timing results were repeated three times and the average of them is documented.
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4.4.1 Simple Tide on an Idealized Floodplain

The DLB approach is evaluated first in an idealized problem with a simple channel

and floodplain. This problem was selected because it allows for a simple tidal signal

to inundate and recede on a gradual linear sloping beach, with a narrowing channel

to provide variations in both horizontal directions.

4.4.1.1 Model and Setup

An idealized channel and floodplain (Fig. 4.7) are represented with an unstruc-

tured mesh with 64,415 vertices and 127,784 elements. The topography/bathymetry

is characterized by an axially-symmetric channel that has a parabolic cross-sectional

profile. The model contains a large floodplain and it has an initial distribution of

vertices with approximately 66% dry and 34% wet. Bathymetry varies linearly and

gradually with a constant slope of ⇡ 0.002 from -8 m below LMSL to 2 m above the

model’s geoid on the floodplain. The resolution also varies from a maximum size of

75-m near the open boundary to 15 to 35 m near the shoreline and overland.

A periodic boundary condition is applied with an amplitude of 1 m and a period

of 12.42 hr (semi-diurnal frequency). This wave extends from the bottom of the

computational domain causing an episodic inundation of 13,240 vertices or 20.55%

of the total vertices (Fig. 4.7). The application of the elevation specified boundary

in this way creates a wet/dry boundary that rises in a “rigid” fashion that mimics

the rise of a storm surge in a small enclosed estuary. The simulation uses a 1-second

timestep and solves the GWCE mass matrix with an explicit mass-lumping approach.

To assess the performance of using ADCIRC with dynamic load balancing (AD-

CIRC+DLB) capability, the model is run on seven processor configurations (3, 6, 12,

24, 48, 96 and 192 processors) that span a wide range of number of DoFs-to-processor

that are utilized in coastal modeling applications with ADCIRC (i.e., 300k to 500

DoFs per processor). Timing statistics are compared to the static version (V53) of
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Figure 4.7. The rigid lid problem. Panel (a) shows the model’s bathymetry
on top of the triangular elements. The elevation specified boundary is
indicated as a thick dashed black line. The hatched region indicates the
areal extent of the inundation. Panel (b) shows a close-up of the wet/dry

(W/D) boundary the bu↵er configurations that were tested.

ADCIRC. Each processor configuration is run with a sequence of five progressively

larger bu↵er configurations that vary the separation zone between online and o✏ine

data between 2-3 elements (⇡ 50-m) BUFDIS2, 3-4 elements (⇡ 100-m) BUFDIS3, 6-

7 elements (⇡ 200-m) BUFDIS6, 15-16 elements BUFDIS15(⇡500-m) and an infinite

size BUFDIS1 (Figure 4.7). The range in BUFDIS represent a range of practical se-

lections given the size of the inundation extent (⇡1.2 km) and the maximum element

sizes overland (⇡ 15�35-m) (Figure 4.7(b)). BUFDIS2 (⇡50-m) implies at least one

or two elements separate the online portion of the mesh from the o✏ine zone, and this

represents a lower bound selection for BUFDIS. In contrast, a selection of BUFDIS1

implies that no elements and vertices are turned o✏ine and the computation never

rebalances, thus this represents an upper-bound selection for BUFDIS.

The application of the weighting scheme (Section 4.3.3.2) with the BUFDIS2

configuration greatly enlarges the number of vertices in a number of partitions located
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Figure 4.8. Panel (a) depicts the vertex distribution on a 24 processor
decomposition with BUFDISinf configuration and (b) with the BUFDIS2
configuration. Panel (c) and (d) indicate the extent of subdomains each

owned by a processor.

in overland regions as compared to the case when everything is weighted equally

(Figure 4.8(c)-(d)). Consequently, the partitions that contain many wet-state DoFs

substantially shrink in number of DoFs and, in general, the number of dry-state

DoFs is greatly reduced per processor (Figure 4.8(a)-(b)). The distribution of online-

state data is balanced between processors (i.e., computational load) even though the

number of total number of vertices (i.e., online + o✏ine state) per processor is largely

disparate (memory load) (Figure 4.8(b)).
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4.4.1.2 Timing Improvements and Scalability

For processor configurations from 3 to 48, ADCIRC+DLB reduced the total wall-

clock time by to 45.5% 10.0%, respectively, relative to the static version of ADCIRC

(Figure 4.9). BUFDIS6 featured the greatest speed-up with the exception of 96 and

192 processor configurations in which a larger BUFDIS15 produced the least slow

down (Figure 4.9(a),(d)). For bu↵er configurations greater than 48 processors, the

total wall-clock time did not exhibit a reduction at a linear rate with a proportional

amount of computational resources as static ADCRIC did (Figure 4.9(b)).

As the bu↵er is reduced in width, there were a greater number of rebalance events

(Figure 4.9(c)). When the time spent rebalancing is removed from the total simula-

tion time (Figure 4.9(b)), BUFDIS2 has the quickest execution time and progressively

wider bu↵er configurations are slower with the exception of the 192 processor config-

uration demonstrating the work savings is proportional to the number of dry-state

DoFs set to an o✏ine-state (Figure 4.9(c)). While a thinner bu↵er width reduces the

TC , an inflection point develops in T at a point in which the time spent rebalancing

exceeds the savings from the approach (Figure 4.9(a)). As more processors were used,

TC was reduced and becomes closer in time in comparison with TRB, making it more

challenging to achieve a speed up.

An theoretical maximum speed up in which all dry-state DoFs have zero cost

could only be achieved with a perfectly balanced computational load and zero time

spent rebalancing. In practice, a net zero time spent rebalancing is un-achievable and

a load imbalance is expected, thus a reduction in the speed up factor from its optimal

value is expected. The theoretical maximum speed-up for this problem ignoring all

dry-state DoFs at every timestep is 59.0%, which is roughly 15.0% greater than the

largest measured speed-up of 45.5%. When the speed-up factor is computed with

the TRB removed from the total time T , the speed up factor ranges between 47.8%

to 11.9% using 3 to 48 processor configurations, respectively. Because the rebalance
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Figure 4.9. Timing statistics for the rigid lid problem as a function of
processor configuration and size (number of elements) of the separation
between the online and o✏ine portions of the computational domain

(BUFDIS). Panel (a) shows the total simulation time T , panel (b) the time
spent performing only the computation TC , panel (c) shows the time spent

rebalancing TRB, and panel (d) shows the speed-up over the static
calculation.
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strategy is based only on the landward movement of the wet/dry boundary, the ebb

of the wet/dry boundary is not taken into consideration to trigger rebalance events.

If the ebb of the wet/dry front is not considering in the calculation of the optimal

speed up, then the optimal speed-up is 50.1%, which is closer to peak measured speed

ups of 45.5% (and 47.8% that neglected TRB).

Both ADCIRC and ADCIRC+DLB demonstrate similar scalability for the rigid

lid problem up to 192 processors when the number of DoFs for each processor config-

uration are plotted against the number of online-state DoFs (Figure 4.10). Note that

the scalability of the default application is achieved when the loop-clipping approach

is deactivated (BUFDISinf ). The predominate di↵erences in the scaling curves be-

tween static and ADCIRC+DLB are a shift slope and a y-o↵set in the scaling curves.

The di↵erence in the slope of eac scaling curve becomes steeper for thinner BUFDIS

as the simulation’s average number of DoFs per processor no longer approximates

the highly variable problem size due to more substanial loop-clipping. Further, the

consistently larger y-o↵sets observed in the scaling curves with thinner BUFDIS are

the result of a greater amount of time spent rebalancing.

The simulation average surface-area-to-volume ratio SV and load imbalance Rimb

are both depicted in Figure 4.11 for all bu↵er and processor configurations. Thinner

bu↵er configurations reduce the problem size by a significant amount (40-60%) that

the problem becomes over subscribed to computational resources given the scalability

properties of ADCIRC [145]. This is evident by the large increase in both the SV as

compared to the same statistics for the static decomposition using the same number

of processors. For example, the maximum value of SV= 29% occurs with the thinnest

BUFDIS2 configuration using the greatest number of processors (192 processes) and

the SV reduces with both wider bu↵er configurations and fewer processors.

Further, the thinnest bu↵ers (BUFDIS2 and BUFDIS3) produce the maximum

values of RIMB=44-46% indicating large load imbalances (Figure 4.9. The 192 pro-
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Figure 4.10. Timing statistics for the rigid lid problem as a function of
number of vertices (degrees-of-freedom) per processor. Note that for
ADCIRC+DLB, the number of vertices per processor is defined as the
average number of online (i.e., non-clipped) vertices over all epochs (see

Section 4.3.5). The average number of vertices per processor includes halo
ghost zone vertices.
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Figure 4.11. Panel (a) shows the simulation average surface-to-area volume
SV (Eq. 4.3). Panel (b) shows the simulation average load imbalance RIMB

(Eq. 4.2).

cessor BUFDIS2 configuration is decomposing an e↵ective problem size of 23k DoFs

(when the o✏ine-state vertices are subtracted out), which leads to approximately

100 DoFs on average per processor. Approximately 100 DoFs per processor is not

expected to scale with the ADCIRC solver, with the expected linear scaling range

ceasing around 1,000 DoFs-per-processor for the model setup used here [145]. The

RIMB and SV are only slightly larger by 2-4% over the values measured for ADCIRC

when the BUFDIS is set to infinity. In BUFDISinf, the problem size is approxi-

mately the same as ADCIRC’s and default performance in these statistics is mea-

sured, which agrees with the timing results (Figure 4.10). In summary, thinner bu↵er

widths with many processors can result in large load imbalances and great commu-

nication volumes; however, these aspects are primarily the result of over subscribing

to computational resources as the application of loop-clipping reduces the size of the

computational problem. The default scability of the application can be restored by

increasing the width of the bu↵er or using fewer processors.
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4.4.2 Flooding from Hurricane Irene in North Carolina

The performance of ADCIRC+DLB is further assessed in a hurricane-driven

coastal flooding simulation of Hurricane Irene (2011) using a validated mesh of the

mid-Atlantic United States region. The problem was selected for the following three

reasons: 1) the mesh is built using measured geospatial datasets (e.g., shoreline

boundaries, and seabed topography) creating a more realistic problem, pre-existing

coastal ocean modeling applications have validated this model during Hurricane Is-

abel (2003) [22], Hurricane Irene [53], and the model is used for real-time predictions

for the North Carolina Forecasting System [21], and 3) the mesh contains a large

quantity of dry-state DoFs.

Hurricane Irene impacted the mid-Atlantic region as a weak hurricane with 10-

minute sustained winds of approximately 78 mph on August, 27-28 2011 [137]. The

hurricane generated water levels of approximately 3-m above local mean sea level

on the westward side of the cyclone’s track near the Tar/Pamlico Sound and Neuse

River basins in North Carolina [Figure 4.12; 53]. Elsewhere in the Pamilco Sound,

peak water levels of 1-m to 2-m above local mean sea level were observed.

4.4.2.1 Model and Setup

The mesh used for this experiment is referred to as North Carolina V9 (NC9) and

contains 608,114 vertices and 1,200,767 elements with the finest resolution located

nearshore of approximately 30-m and expanding to approximately 500-m in size over

the floodplain. At initialization, the vertices are distributed as approximately 56%

dry. The inter-tidal zone produces water levels that maximally range between ⇡

0.40 to 0.60 m above sea level and approximately 5 to 6% of the floodplain vertices

wet with solely the tides (Figure 4.12). The simulation in this configuration has a

maximum theoretical speed up of 49% given the flooding from wind and tides. The

extent of the floodplain for the NC9 mesh is substantial and was designed based on
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a historical review of flooding in the region by the developers of the model [21]. In

areas nearby large rivers such as the Tar and Neuse River, the inland extent of the

model extends up to the 8-m elevation contour above mean sea level. Outside of the

riverine areas, the model domain extends up to the 15-m elevation contour above sea

level.

The run setup used in this section resembles the typical operational simulation

[59]: a duration of approximately one week (8 simulation days), explicit numerical

scheme, 0.5 second timestep, winds and tides, and point-based outputs of free surface

elevation. Wind and pressure data from Ocean Weather Incorporated (OWI) are used

to force the model between the dates of August 21, 2011 12:00:00 UTC to August 29,

2008 00:00:00 UTC at a time increment of 15-minutes. The OWI wind and pressure

products were available on two structured grids: an outer nest covering the western

North Atlantic with a horizontal resolution of approximately 10 km and an inner

nest with a horizontal resolution of approximately 1 km that covered the North and

South Carolina region in greater detail.

Temporally consistent tidal processes are included in the simulation by specifying

elevation boundary conditions on an open ocean segment using the TPXO9.1 atlas 1

for four major semi-diurnal (M2, N2, S2, K2) and four major diurnal tidal constituents

(K1, O1, P1, Q1). Nodal factors and equilibrium arguments are computed and applied

for the simulation start time. Forcings are ramped from a quiet resting state using a

hyperbolic tangent function over the first two days of the simulation to avoid exciting

spurious modes in the study region. Total water level heights are recorded every 6

simulation minutes from simulation days 2 to 8 at 74 rapidly deployed gauges by

the United States Geological Survey Service (USGS) and an additional 8 National

Oceanic Service (NOS) gauges depicted in Figure 4.12.

1http://volkov.oce.orst.edu/tides/global.html

166



Figure 4.12. The (a) mesh’s topography/bathymetry with the region of
interest around the Outer Banks of North Carolina indicated by the red
dotted box. In panel (a) the solid blue indicates the open ocean boundary
where elevation forcing is applied. In panel (b), the simulated maximum
free surface elevation above the geoid during the simulation of Hurricane
Irene is shown along with the location of eight NOAA gauges (black

squares) and 118 USGS high water marks (blue diamonds). The location of
the model’s extent is indicated by a green line and the track of Hurricane

Irene is annotated as a thick red line in all panels.
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4.4.2.2 Simulations

The model setup is executed on five processor configurations (60, 120, 240, 360,

480 processors) that lead to approximately 10,000 to 1,000 DoFs per processor with

static ADCIRC, respectively. In contrast to configuring the bu↵er zone based on

distance from the wet/dry boundary (Section 4.4.1), bu↵er configurations are de-

termined in this section by a combination of elevation criteria (BUFDP) and the

frequecy of rebalance events. For this problem, the distance-based bu↵er configura-

tions did not perform well given the highly variable NC9 mesh resolution overland,

which complicated the definition of bu↵er width, and these results were not shown.

Simulation 1 used a BUFDP at the start of the simulation which was located in

the elevation range periodically flooded by the tides (e.g., 10 cm above local mean

sea level), while simulations 2 and 3 were elevated above the inter-tidal range (e.g.,

greater than 50 cm above local mean sea level). If a rebalance event occurred less

than 4 simulation hours since the last event, the program would elevate BUFDP by

10 cm above its last value to relax the frequency of rebalancing. The selection of

these solution-driven bu↵er adaption parameters were chosen to prevent excessive

rebalancing and ±5% perturbations to the parameters did not change the overall

timing statistics significantly. The selection of the bu↵er parameters represent rea-

sonable initial selections given the physical lengthscales involved in the problem and

computational domain.

4.4.2.3 Comparison with measured data

Given the modifications to the program to support DLB, it is important to demon-

strate first that the ADCIRC+DLB can reproduce simulation results that match with

the default ADCIRC solver. Both ADCIRC and ADCIRC+DLB produced identi-

cal time series results with di↵erences on the order of millimeters at both the eight

NOS gauges (Figure 4.13) and 74 USGS gauges (Figure 4.14). Di↵erence on the
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order of millimeters is to be expected given the parallel implementation of the logic-

based wetting/drying algorithm [49]. Compared to observations of measured water

levels, the timing and peak of simulated water level responses at the eight NOAA

Oceanic Service (NOS) gauges in the region were accurately captured with the excep-

tion of Stations 1 and Station 4, which both underpredicted the water level response

(Figure 4.12). Agreement between simulated results and high water mark observa-

tions at 74 USGS sensor in the Neuse, Tar, and Pamilco river basins and between

ADCIRC and ADCIRC+DLB does not vary by more than 0.5 mm. Together the

agreement with measured data and the static ADCIRC solution demonstrate that

ADCIRC+DLB is both capturing an accurate system response to within 0.001% of

the existing static ADCIRC solver (Figure 4.14).

4.4.2.4 Timing Improvements

The total time spent performing the simulation is shown in Figure 4.15(a). For the

three elevation-based bu↵er configurations, ADCIRC+DLB completed the simulation

in less wall-clock time with speed ups ranging between 7% to 21%. However, for all

bu↵er configurations using 480 processors, the application was slowed down by 6% to

15% (Figure 4.15(c)). The largest speed ups occurred when the initial BUFDP was

set to the lowest elevation above sea level (0.10 m) and the least speed ups occurred

with the highest elevation bu↵er (1.0 m), which demonstrate that the speed up is

proportional to the number of dry-state DoFs set to an o✏ine-state.

The cumulative time spent rebalancing TRB was relatively small occupying be-

tween 0.001% and 2.33% of the total static simulation time (0.33 to 0.70 wall-clock

minutes) (Figure 4.15(b)). The TRB was at a minimum when using the 120 proces-

sors configuration and became marginally greater by 10 to 30 seconds when using

both more and less processors, but this variation in TRB is small in comparison with

the overall simulation time (30 to 250 wall-clock minutes). For lower elevation crite-
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Figure 4.13. Time series comparisons of total water levels at the eight
National Oceanic Service (NOS) gauges (Figure 4.12). Observations are

shown at a solid black line where available.
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Figure 4.14. Agreement in computed high water marks between ADCIRC
and ADCIRC+DLB as compared to 74 USGS high water marks (m).
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Figure 4.15. Panel (a) shows the total wall-clock time T simulating
Hurricane Irene as a function of number of processors and for the five

bu↵er configurations based on depth. Panel (b) shows TRB, and panel (c)
shows the speed-up.
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ria (e.g., BUFDP=0.10 m), the problem rebalanced a total of 29 times, whereas for

higher elevation bu↵er criteria (e.g., BUFDP=1.0 m) the problem rebalanced a total

of 16 times (Figure 4.16). The majority of rebalance events occurred around the time

of Hurricane Irene’s landfall in the study region in conjunction with the period of

associated coastal flooding.

The time in each simulation when rebalance events occurred is indicated in Fig-

ure 4.16. Events that occurred in quick succession (i.e., less than four hours apart) led

to reductions in the estimated speed up because the program would raise the bu↵er

elevation. By the end of the simulation’s ramp period (2 days), all three bu↵er con-

figurations produced similar estimated speed ups that ranged between 29% and 33%.

Since BUFDP=1.0 was located above the local inter-tidal range at the start of that

simulation, the first rebalance event did not occur until the time of Hurricane Irene’s

landfall (around simulation day 5.5). Likewise, the BUFDP=0.5 m configuration pro-

duced the fist rebalance event sooner than BUFDP=1.0 but later than BUFDP=0.1

m–at approximately simulation day 3. Overall, the lower elevation bu↵er configura-

tion was not able to produce a significant di↵erences in estimated speed ups as the

tides inevitably controlled the pre-event elevation of the bu↵er’s elevation, and this

aspect is reflected in the previously described timing results (Figure 4.15).

The overall trends of the simulation average SV and load imbalance RIMB are in

agreement with the results also documented for the simple tide problem (Figure 4.17).

However, slight reductions of 1-2% were measured in the SV as compared to static

ADCIRC, but these di↵erences in SV are expected given the usage of ParMETIS in

lieu of METIS. The computational performance for this problem is sampled further

away from the scaling limit of ADCIRC naturally leading to lower SV . More notice-

ably, bu↵er configurations that set more of the floodplain to an o✏ine state led to

significantly greater simulation average load imbalances RIMB that ranged between

approximately 30% to 80% (Figure 4.17(b)). Even when the loop-clipping approach
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Figure 4.16. Illustrates the estimated speed up as a function simulation
day. Rebalancing events are indicated by the colored markers. The solid
black vertical lines indicate the ending up of the ramping period and the

time of the hurricane’s landfall in North Carolina.
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Figure 4.17. Panel (a) shows the simulation average surface-to-area volume
SV (Eq. 4.3). Panel (b) shows the simulation average load imbalance RIMB

(Eq. 4.2).

was not utilized, a nearly two-fold increase in RIMB was measured over the static

approach.

In the configurations that produced large load imbalances, the distribution of

DoFs per processor was inspected in greater detail. In all the configurations tested,

between two to four processors contained more than 50% of the average number

of online-state DoFs, while the majority of processors remained well-balanced with

RIMB never greater than 5% (Figure 4.18). However, since slowest process in parallel

will be dictated by the process that owns the maximum number of DoFs, this explains

in part the diminishing speed ups as more processors were used (c.f., Figure 4.15)

and the 24.0% reduction from the theoretical maximum speed up.

Spatially, the greatest computational loads occur along the Southern Atlantic

Bight in the computational domain. The anomalous loads tend to be co-located with

patches of elements that are connected to only a single-neighboring element (singly-

connected elements) (Figure 4.19). It is straightforward to see that elements that

are connected to only a single-neighboring element contain more vertices than ele-
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Figure 4.18. Panels (a) and (b) show the number of DoFs per processor
classified as either wet, dry, and o✏ine. The processors that own the
maximum number of DoFs are circled in black. Panel (b) uses the

BUFDP=0.1 m configuration.

ments. Since ADCIRC+DLB partitions and balances the elements of the mesh, the

vertex graph can become largely imbalanced given the presence of singly-connected

elemental connectivity. When the Southern Atlantic portion of the mesh is replaced

with elements that contain at least 2 or 3 connected elements, the load imbalance

largely diminishes by a factor of two and the speed ups increase two-fold to maxi-

mally 44.6%, which is approximately 5% less than the theoretical maximum speed

up (Figure 4.20).

4.5 Discussion and Conclusion

The aim of this work was to reduce the cost of modeling wind-driven coastal flood-

ing on unstructured triangular meshes using the ADvanced CIRCulation (ADICRC)

Shallow-Water program. Regional coastal ADCIRC meshes often contain relatively

large amounts of dry-state degrees-of-freedom (DoF) that are used to represent finely-

detailed aspects of the coastal floodplains but this can make the models’ parallel
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Figure 4.19. Panel (a) shows the percent anomaly in load from the mean
load. Panel (b) shows the region indicated by the black box in panel (a).
Panel (c) illustrates the mesh connectivity in the region that contains the

largest load imbalance.

177



s

Figure 4.20. Panel (a) shows the speed up associated with the
BUFDP=0.10 m simulation when the singly-connected elements are
removed from the NC9 mesh (these elements were illustrated in

Figure 4.19). Panel (b) illustrates the simulation average load imbalance.

execution susceptible to large work imbalances and thus ine�cient.

Our solution to the load balancing problem for modeling coastal floodplains in-

volves re-decomposing the unstructured mesh in parallel based on the location of

the moving free-surface boundary. Overall, significant reductions in the total wall-

clock time of coastal flooding simulations could be achieved through the integra-

tion of a dynamic load balancing (DLB) capability in the parallel implementation

of ADCIRC (ADCIRC+DLB). To create the ADCIRC+DLB implementation, well-

developed third-party libraries such as the Zoltan toolkit [24] and ParMETIS [83]

were used to provide essential functionality. A simple elemental weighting scheme

was developed along with a parallel mesh partitioning algorithm to redistribute the

mesh during runtime.

For the idealized simulation and the more realistic simulation of coastal flooding

driven by Hurricane Irene (2011), ADCIRC+DLB demonstrated speed ups ranging

between 10-45% over static ADCIRC in the total wall-clock time. More importantly,

these speed ups were proportional to the number of dry-state DoFs set to an o✏ine-
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state. In the simple problem with a tide-like signal, the measured speed ups were

within 3% of the theoretical maximum speed up. In the more realistic example

with coastal flooding driven by Hurricane Irene (2011), peak speed up of 25% were

measured that were largely 24% under the theoretical maximum speed up of 49%.

However, this large reduction in speed up from the theoretical maximum was

shown to be related to the mesh connectivity. Two connected triangular elements

that are connected to only each other contain more vertices than elements. Thus,

when the mesh elements were decomposed between processors, large vertex-based

load imbalances developed and these imbalances largely slowed down the parallel

calculation. When the patch of singly-connected elements was removed from the

mesh, speed ups improved (to maximally 45%) and load imbalances were reduced by

nearly a factor of two. Recent advances in mesh generation techniques for unstruc-

tured coastal modeling now can produce meshes that do not contain singly-connected

elements; in fact this aspect of the mesh design was directly considerd in Roberts

et al. [131] and described in Chapter 2. Thus, to take full advantage of the DLB

capabilities, a mesh of the coastal domain should have a bounded valency preferably

with each vertex having exactly six connected neighbors. In this ideal mesh connec-

tivity configuration, the number of neighboring elements and vertices are both six

and thus both the vertex and elemental decomposition can be simultaneously load

balanced optimizing performance of ADCIRC+DLB.

The performance of ADCIRC+DLB as compared to static ADCIRC was studied

given a range of computational resources (3 to 480 processors) in both the idealized

problem and the realistic case. Overall, ADCIRC+DLB exhibited similar scaling

behavior with a linear reduction in simulation time with a proportional number of

computational resources. However, the reduction in the problem size associated with

DLB, given the same amount of computational resources, can lead to calculation slow-

downs in some of the high-processor configurations that were tested (specifically in
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the idealized problem). The surface-area-to-volume ratio of the subdomain associated

with reducing the problem size will grow more quickly given the reduced problem state

and cause the scaling limit of ADCIRC to be reached with using fewer processors.

The success of ADCIRC+DLB to produce speed ups depended also in part on

the selection of criteria that determined when to rebalance the mesh data. Rebal-

ance criteria that was based on the topographic elevation of mesh data was found to

be more robust than using a minimum-distance criteria from the wet/dry boundary.

Distance-based criteria became mesh dependent as realistic problems often utilize

highly variable element sizes. The topographic rebalance criteria also considered the

rising rate of the water levels, which automatically lifted it out of the inter-tidal

zone when tidal flooding was occurring. For example, if coastal flooding was occur-

ring rapidly creating subsequent rebalance events less than four hours apart, then

the rebalance criteria was raised by 10 cm. Overall, the rebalance criteria based on

both elevation and the rising rate of water levels was successful in both producing

speedups and producing a trivial time overhead. In the realistic example studied, AD-

CIRC+DLB produced between 20-80 rebalance events cumulatively representing 0.03

to 2.33% of the total static simulation. Thus, our recommendation for other problems

is to remove as much of the coastal floodplain using a thin bu↵er (BUFDP=0.10 m)

and let the program automatically lift it as coastal flooding occurs throughout the

domain to maximize the pre-event computational savings.

Some aspects of future work concern improving the rebalance criteria to increase

the amount of floodplain that can be dynamically removed from the calculation.

Currently, the rebalance criteria is defined globally over the entire computational

domain and can make the algorithm ine↵ective for modeling total water levels in

regional domains that may contain substantial spatial variations in the inter-tidal

range. For example, large tidal amplitudes away from the primary flooding region

may result in many dry-state DoFs that remain in the calculation despite that coastal

180



flooding may be far away from this region. Thus, future work with ADCIRC+DLB

should improve the definition of the rebalance criteria based on the local water surface

conditions only. The local rebalance criteria could increase the measured speed ups

for models with more regional floodplain coverage by enabling more dry-state DoFs

to be dynamically removed from the calculation.

Future modeling systems may contain even more than 50% of their total DoFS

overland. When ADCIRC+DLB is used with these modeling systems, it may create

prohibitive memory imbalances between processors. Further, the distributed data

directories [120] used to locate o↵-processor data may become ine�cient given the

potentially extremely large memory imbalances and thus slow down rebalancing. A

potential solution to the memory imbalance issue is to use a subset of the total num-

ber of processors for the rebalancing operation; analogous to the dedicated writer

processors that were described in [145]. In the subset of processors involved with

only rebalancing, the ownership of data can remain equally distributed ensuring the

memory load is well-balanced and thus the search-speed of the distributed data di-

rectories can be much more e�cient.

Overall, this technology represents a new direction to reduce the cost of high-

fidelity unstructured, mesh-based, modeling approaches that require extensive flood-

plains for flooding simulations. Our approach does not sacrifice the well-established

accuracy and the majority of functionality available in the ADCIRC shallow-water

solver. However, future work is required to enable more of the functionality in the

static ADCIRC suite. Specifically, the inclusion of the tightly coupled SWAN model

[52] should be developed. The developed technology can be used for new model-

ing systems to be developed that can better resolve the floodplain’s physical system

with less worry for the associated computational cost. For example, building the

next-generation comprehensive modeling system of the East and Gulf Coasts of the

United States with nearly uniform 100-m resolution overland would imply that the
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vast majority (>95%) of vertices’ would remain in a dry-state for a given event. In

this case, the size of the problem and the number of dry-state DoFs would make it a

suitable candidate to take advantage of ADCIRC+DLB to speed up the calculation.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORKS

5.1 Conclusions

This thesis examined and developed methods to improve the e�ciency of nu-

merical simulations of tides, storm surges, and the related flooding on unstructured

meshes of the coastal ocean. I developed and implemented methods to automatically

and e�ciently construct high-geometric quality triangulations that are intended for

the numerical simulation of the Shallow Water Equations (SWEs) using the Finite

Element Method (FEM). These mesh generation procedures were integrated into

OceanMesh2D, which is a freely available and well-documented open-source software.

The software represents a self-contained meshing solution (i.e., it does not require

external software besides MATLAB) together dealing with the geospatial data of the

shoreline and seabed topograhy to create meshes of the coastal ocean. The technol-

ogy also develops the scripting procedures that are necessary to automatically and

e�ciently build high-fidelity modeling systems of the coastal ocean anywhere in the

world.

A general conclusion is that automatic mesh generation for coastal modeling has

reached a new level of quality, e�ciency, and automation. Perhaps the most powerful

result is that the usage and modification of the DistMesh2D algorithm automatically

simplifies polygonal boundaries that approximate arbitrarily complex shorelines. The

resulting simplified shoreline boundaries can be used for a variety of purposes out-

side of mesh generation. In combination with the feature-size technique that was
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developed and improved upon to size elements nearshore, this technology enables

users to develop incredibly fine-detailed coastal ocean circulation models that can re-

solve high-aspect ratio shoreline geometry features extending far inland. Inevitably,

this capability will make it easier to develop models that can support new coupling

paradigms between storm surge calculations and river discharges from hydrologic

models for more physically complete total water level simulations.

Another key result was the multiscale meshing technique, which can be used to

construct a single seamless unstructured mesh with smooth mesh size transitions

spanning large gaps in element sizes. For the purpose of regional coastal modeling,

this approach can be considered beneficial over traditional structured grid nesting

approaches as it avoids the need for a coupling paradigm in the numerical solver as

well as issues associated with interpolation and smoothing at the interfaces between

disparate resolution nests. Further, it makes it easier to incorporate the information

contained within Light RAnging and Detection (LiDAR) datasets that have relatively

small horizontal resolutions (O(1 m) horizontal resolution). The meshing capability

can be used to rapidly update existing meshes objectively and largely automatically

as new LiDAR datasets become available. Given the utility of these techniques and

procedures, organizations such as NOAA, the Army Corp. of Engineers, F.M. Global,

and Berkshire Hathaway are generating their own modeling systems with it.

Using the developed mesh generation technology, I studied the e↵ect of variable

unstructured mesh resolution based solely on a priori information such as shoreline

geometry and seabed topographic features on the forward simulation of barotropic

tides. The purpose of this work was to increase confidence in our design of high-

fidelity coastal ocean models, to quantify the e�cacy of current mesh design practices,

and to develop new meshes of the coastal ocean with fewer vertices. Through the

combination of the constraints imposed by a set of documented mesh size functions,

the vertex count was reduced by nearly an order of magnitude (1.3M) from an 10.8M
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vertex reference mesh and had a converged solution with tidal error metrics in 99%

of the East and Gulf Coast waters ranging from -2% to +1%.

Pre-existing models use nearly uniform resolution nearshore and apply a wavelength-

to-gridscale sizing heuristic along the inner and outer shelf, which was criticized due

to its simplistic assumptions and associated ine�ciency. For example, the hand-

crafted mesh used in the Hurricane Surge Operational Forecasting system (HSOFS)

[146] for real-time predictions employs a minimum uniform shoreline resolution of

250 m and contains 0.75 million underwater vertices. In contrast, the converged

lightweight mesh created via OceanMesh2D that spans the same ECGC study region

as HSOFS, utilizes up to five times finer resolution nearshore (50 m compared to 250

m) and up to ten times finer resolution along the continental slope (1 km compared

to 10 km), with only 1.6 times the total number of underwater vertices than HSOFS.

Further, unlike HSOFS all the meshes documented in this work can be reproduced

within hours following the parameters listed in the text with the software.

I highlighted that an important first step in the coastal model development pro-

cedure is to construct a mesh that minimizes the physical domain approximation

error before model tuning occurs vis-a-vis varying bottom friction, other dissipative

coe�cients, viscous models, and manually altering ocean depths and shoreline form.

As was evident in this work, by improving the accuracy of the approximate problem

(i.e., the representation of the shoreline and seabed topography as per the available

geospatial data used), the tidal solutions exhibited convergence towards a reference

solution. The predominate improvements in the accuracy of the tidal harmonics as

compared to measured data stemmed from 1) incorporating finer resolution following

seabed gradients and 2) refining areas in the computational domain co-located with

narrow geometries or large values of upslope area (e.g., estuarine channels). Together

these two aspects of the mesh design enabled the usage of a steeper element size ex-

pansion rate that largely reduced the overall vertex count in the mesh but did not

185



highly distort the solution. Another key result is that uniform shoreline resolution is

not necessary to capture the geometric form of the shoreline and the feature-size al-

gorithm should be used instead to produce significantly more e�cient discretizations.

Therefore, it is a sensible conclusion to design coastal models with the feature-size al-

gorithm described in Chapter 2 and implemented in the OceanMesh2D software and

to fully move away from manually and uniformly resolving the shoreline for tides,

coastal flooding, and storm surge calculations.

A complementary aspect of this work was dedicated to developing technology that

could e↵ectively reduce the cost of modeling coastal floodplains with high-resolution

unstructured triangles. In coastal ocean simulations, these large floodplains are al-

lowed to wet and dry during the storm, and thus the workload for wet regions may

not be distributed evenly over the computational resources. I developed a method-

ology and an implementation within a popular shallow-water equation solver called

ADvanced CIRCulation model+Dynamic Load Balancing (ADCIRC+DLB) to dy-

namically load balance the floodplain component of a coastal mesh. The idea was

that by producing parallel decompositions that were better load balanced, it would

lead to more e�cient and thus faster parallel computations. In both and idealized

realistic case study, I demonstrated the application was capable of speed ups (45%

and 47%) close to their theoretical maximums over the static ADCIRC. My solution

to the load balancing problem involved e�ciently re-decomposing the unstructured

mesh in parallel based on the location of the moving free-surface boundary. A variety

of well-developed software packages were integrated into the solver to produce the par-

allel re-decomposition of the mesh, such as Zoltan toolkit and the ParMETIS graph

partitioner. A simple approach was used to reduce the cost of the dry-state DoFs

by rearranging the vertex and elemental data in memory based on an online/o✏ine

status. I demonstrated that this loop-rearrangement methodology could e↵ectively

eliminate the calculation cost of the dry-state DoFS if the graph of the unstructured
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mesh csould be well-balanced via the graph partitioner.

The success of ADCIRC+DLB in producing speed ups for the problems studied

depended in part on the selection of criteria that determined when to rebalance the

mesh data. Overall, the rebalance criteria based on topographic elevation above sea

level was successful in both producing speedups and minimizing the time spent in

the rebalancing operation. In the realistic example studied, ADCIRC+DLB pro-

duced between 20-80 rebalance events cumulatively representing 0.03 to 2.33% of the

total static simulation. Due to the regional-scale nature of a tropical cyclone event, a

simulation must be run for a su�ciently long period of time pre-event to ensure the

water levels equilibrate and the application of forcing functions is smoothly varying

in time to avoid exciting numerical instabilities. Thus, a significant component of the

simulation time is often spent pre-event when the water levels do not flood overland.

Considering this, my recommendation was to configure the rebalance criteria so that

as much of the coastal floodplain is set to an o✏ine-state and let the program auto-

matically lift the zone that trigger rebalances as coastal flooding occurs throughout

the domain.

Overall, this technology represents a new direction to reduce the cost of high res-

olution unstructured, mesh-based, modeling approaches that include extensive flood-

plains for coastal flooding simulations. ADCIRC+DLB does not sacrifice the vali-

dated accuracy and the majority of functionality available in the program. However,

future work is required to enable more of the nuanced functionality in the ADCIRC

suite with the DLB capability.

5.2 Future work

The topics focused on in this work have led to many new questions and ideas. The

following list some of the most relevant directions that could be pursued in future

works:
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• Automatic extraction of shoreline datasets from satellite imagery

The existing approach to coastal mesh generation involves extracting a geo-

metric elevation contour that approximates the location of the shoreline (e.g.,

0-m isoline) using the methods encapsulated in OceanMesh2D from a DEM.

However, as we begin to couple and integrate hydraulic processes into our cal-

culations of coastal flooding, such as river discharge and precipitation run-o↵,

we realize that important shoreline features may no longer be well-approximated

by the 0-m elevation contour. This is especially the case for rivers as they of-

ten extend far above the local mean sea level. Thus, additional methods are

required to correctly and automatically extract the boundary description that

correctly identifies features that always reamin underwater from land-based

features. Particularly, the methods documented in [20] could be implemented

based on a texture-based analysis of visible satellite imagery and embedded

within the geospatial processing unit of OceanMesh2D.

• Anisotropic mesh generation

Coastal flows often enter narrow and restricted waterways in which the flow

direction can become highly anisotropic. In these situations, it is sensible to

incorporate such anisotropy into the underlying mesh design. In particular,

elongating the element sizes in the direction of the flow can help enhance the

model’s numerical stability and accuracy. One possible way to create anisotropy

is to generalize the pre-existing isotropic mesh size function using a metric

tensor [25]. This would involve the calculation of the three additional mesh size

functions (minor, major, and angle of major axis) that would be necessary for

the calculation of this metric tensor. These additional components of the mesh

size function could be extracted automtically from the form of the boundary

description (i.e., width, sinuosity, length) and the seabed depth.
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• Integrate a posterioi mesh improvement techniques

Hagen et al. [72, 73] explored the distribution of mesh resolution for 1D models

of the continental shelf and 2D tidal models through the LTEA method with

the goal to reduce the overall vertex count of a tidal model using a posteriori

truncation error indicators. An interesting future direction of some of my work

would be to take a mesh created via OceanMesh2D that produces a low ap-

proximate error and then apply the LTEA method to further reduce the vertex

count and/or reduce the numerical truncation error. This would also enable the

necessary work to study how the convergence of the LTEA method is e↵ected

by the various initial point configurations.

• Improved rebalance criteria

Currently in ADCIRC+DLB, the rebalance criteria is defined globally over the

entire computational domain. The global definition of the rebalance criteria

can make the algorithm ine↵ective for modeling total water levels in regional

domains that may contain substantial spatial variations in the tide range. Thus,

future work with ADCIRC+DLB should improve the definition of the rebalance

criteria based on the local water surface conditions only. The local rebalance

criteria could increase the measured speed ups for models with more regional

floodplain coverage by enabling more dry-state DoFs to be dynamically removed

from the calculation. One di�culty with the local rebalance criteria is defining

an appropriate space around each vertex in which a specific rebalance criteria is

defined while avoiding searching in parallel during run-time. One could perhaps

rely on a pre-computed solution of tides to determine the local inter-tidal range

and set the bu↵er height accordingly.

• Dedicated processor group to perform rebalancing

Future modeling systems may contain even more than 50% of their total DoFS
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overland. When ADCIRC+DLB is used with these future modeling systems,

it may create prohibitive memory imbalances between processors that may ex-

ceed the virtual memory on the processor. One way to circumvent this is to

introduce an additional graph weight proportional to the amount of memory

over a threshold. Further, the distributed data directories [120] used in our

approach to locate o↵-processor data will become ine�cient given excessives

memory imbalances. This can slow down rebalancing operations as the hash

table’s performance is negatively impacted. A potential solution to the poten-

tially poor performance of the distributed data directories is to use a subset of

the processors for the rebalancing operation; analogous to the dedicated writer

processors that were described in [52]. In the subset of processors involved with

only rebalancing the mesh, the ownership of mesh data can remain equally dis-

tributed ensuring the memory load is well-balanced and thus the search-speed

of the distributed data directories can be much more e�cient.
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APPENDIX A

PARALLEL WEIR PARTITIONING

Here I document the algorithm that is implemented in ADCIRC+DLB to decom-

pose the internal-type (weir) barrier conditions. These boundary conditions represent

sub-gridscale barriers such as levees and walls that are critical for modeling coastal

circulations but cannot be expliclty represented at the gridscales used. The weirs in

ADCIRC are a pair of vertices separated by a small distance (i.e., < 10-m). The

model calculates a flux across the vertices using the elevations specified on either

vertex of the weir. There are also two coe�cients that describe the nature of the flow

overtop the weir (either subcritical or supercritical flow).

ADCIRC requires that both pair of vertices of each weir be localized on the same

processor to correctly compute the flux, which creates a challenging data decompo-

sition problem in a parallel computing environment since the graph decomposition

software does cannot guarantee these constraints are enforced through weights.

In the following algorithm, a weir is composed of two vertices: one front-facing

and one back-facing. Note that either the front or back facing weirs are a member

of only one weir, in other words, either vertex cannot be shared between multiple

weirs in the following algorithm. ADCIRC+DLB will strip weirs owned by multiple

pairs automatically. In the following, a weir is fixed if both the front and back facing

veritces exist locally on the processor and cut if either the front facing or back facing

vertex is not local to the processor. An element is connected to another element if

it shares an edge (i.e., two vertices). Further, an element is local to a processor if it

exists in that processor’s memory.
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The following algorithm takes place after the parallel mesh partitioning algorithm

has finished. Thus, the elements and vertices that are needed to fix the weirs are

added locally as ghost elements and vertices (i.e., they are duplicated between pro-

cessors and exchange information through message passing).
Result: A data decomposition with all weirs fixed.

while If any weir is cut do
1. Add non-local elements connected to local elements that contain at least

one weir vertex;

2. If any to-be-added element cuts another weir and is not flagged, do not

localize this element;

3. Migrate elements found in step 2 between processors using message

passing;

4. Migrate vertices to support newly added elements from step 3;

5. Check if all weirs are still cut and exit if they are all fixed. If an element

has a weir that’s still cut, flag it and repeat algorithm;

end

Algorithm 2: Parallel weir partitioning algorithm.
Algorithm 2 is iterative and in practice takes between 3 to 4 iterations to converge

on meshes with thousands of weirs. The pre-existing algorithm used to partition weirs

is largely ine�cient. In fact, when decomposing on a mesh with approximately 8K

weirs, the time required to produce a decomposition with all fixed weirs is between

3 to 6 times faster than the static version of the code (Figure A.1).
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Figure A.1. The time required to initially partition a mesh for the number
of processors labeled on the x-axis with 14k weirs (a) and 8K weirs (b)

using algorithm 2 as compared to the serial algorithm.
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