UNYE

Universidade
de Sao Paulo

Full Waveform Inversion
with Finite Elements

Keith Roberts, Lucas Franceschini, Joao Anderson Isler,
Alexandre Olender

Universidade de Sao Paulo
Escola Politécnica

Outline UNSY,

de Sao Paulo

1. Purpose 4. Results
2. Background 4.4.1.Configuration
2.1.Problem statement 4.4.2 Experimental

| | results
2.2.Governing equations

5. Next steps
3. Methods
3.1.Spatio-temporal discretization

3.2.Adjoint formulation

3.3.Implementation of Full Waveform
Inversion

de Sao Paulo

Purpose ST

* Developing programs to solve inversion problems in seismologic domains using finite

elements.

* Using Firedrake: a Domain Specific Language (DSL) written in Python to solve variational
problems.

* Workstreams 3 and 4 have been collectively developing:
* Spyro: Software for time domain FWI in Firedrake

1.

Automated mesh generation workflows for seismology in 2D and 3D for isotropic
triangular and tetrahedral elements.

Continuous- and Discontinous Galerkin wave propagators (acoustic and elastic)
with arbitrary P order in 2D and 3D.

SSPRK, Leapfrog, and Newmark time stepping schemes (support for up to 4th
order accurate in time).

Perfectly Matched Layer absorbing layers in 2D and 3D.

Mesh-independent functional gradient for all discretizations using discrete adjoint
method.

Depth (km)

Problem Statemen SH

Universidade
de Sao Paulo

e Full-Waveform Inversion (FWI) derives high-resolution velocity models by minimizing the

difference between observed and modeled seismic waveforms (all the waveforms=full).

 Minimize the functional y subject to constraints imposed by the acoustic wave equation.

* [teratively modify model parameter.

N

receiver 1 -
A receive X0 =5 [Slptnt) — o)

¥ source T k=1

0
Initial Model p(x, 1) p(x,1)

Shot Gather of Initial Model 0 Shot Gather of True Model

0

0

0.5

0.5

—

-d
(6]
Time (8)

N

o
=
N

3 4 5 I km/s :
Distance (km) o 1 2 3 0 1 2 3

Distance (km) Distance (km)

Governing equations 2

de Sao Paulo

We consider the (second-order) scalar wave problem

Oip — V - (CZV,D) = f+ 02’7 in [x €, (1)

op

C n=20 onl
at+ Vp- N,

p%:O in Q,

opl. =0 inQ,

lo

ENCES

where pis the pressure, ¢ = \/\/p is the acoustic wave velocity, v is
a term representing the absorbing boundary condition, X is the first
Lamé parameter, p is the density, f is the source, /| = (0, T) is a finite
interval, €2 is a bounded domain, I'y is a subset of the boundary.

Spatial Discretization %

de Sao Paulo

The weak formulation is obtained multiplying the acoustic wave
equation by a test function, integrating over the domain and applying

the Gauss divergence theorem. It is given by the following statement.
Find p € V¢ such that for all g € V°

aﬁ(pa q)Q + a(C)(p7 q)_ < szp) ha q >o0= (fa q)Q + (02'77 q)Qa (5)
with
(P, q)a = /Q pqax,

a9(p,q) = /Q ¢*Vp - Vqdx
and
<Vp-nqg>= / c?(Vp-h)gds =0
of2

- - . | N
Temporal discretization ==

The algebro-differential (Eq. 5) was temporally discretized such that
tn = nAt timesteps:

pn+1 2P _|_pn 1 aq apn+1
X dx
/ AP QX+ | C oy ox
mass matrlx stlffness matrix

. 02 n+1 n1
/fqu+/ ~ydX — / 2At

For the stiffness matrix, we choose to represent the Vp variable at
time n+ 1 for numerical stability.

TSP
Second-order system of s

ordinary differential equations

Thus, the discretization in space of the Continuous Galerking method
leads to the linear second-order system of ordinary differential
equations

Mﬂh(t) Auh(t) = fh(t), tel (7)

with initial conditions

Un(to) = up(0) :=0, ux(lh) =up(0):=0,

where M denotes the mass mairix and A the stiffness matrix.

Discrete adjoint ===

* Theoretically simpler than continuous adjoint (transpose of system of equations).

Why we didn’t use automatic differentiation?

* Automatic differentiation w/ Dolfin-adjoint does not support functionals defined at
points (i.e., receivers).

* Much of the available gradient-based optimization methods are mesh-dependent.

« More flexibility in our implementation (e.g., support for both ensemble and spatial
parallelism).

LS H
Discrete Adjoint - Mathematical &%
Formulation

e Starting point: time-stepper for a variable ¢:

r

¢o = ¢p° n=>0
y B1¢1+B0¢O+M¢O+SOZO n=1
. Angbn + An—lgbn—l + An—2¢n—2 + Sn—l =0 n>1

* Matrices B, A, are spatial discrete matrices
e Y and ¢’ are initial conditions (homogeneous)

* §,are external source terms

e |f PML is used, ¢ contains the pressure and other damping functions

Discrete Adjoint - Mathematica USJJ
Formulation

de Sao Paulo

* Under the above constraints, we look for minimizing some error

() = ZnNzo (H,—r,)" (Hb,— 1)

* His the measure operator, r, are the shot records

* We resort to the Lagrangian formalism:
L(¢ ¢ c) = J(¢,) + BT (o — ¢°) + c/)la’T<[EBl¢1 + By + M + SO>

+ ZN>1 ET(Ay + A1y + Ay sy s +S,_1)

Discrete Adjoint — Mathematical LAY H

Universidade

Formulation dajSdo(Paulo

* Taking its variation with respect to the direct variables ¢, leads to:
AT AL+ AL = — T (Hp, ~r,) n< N

< A, b + A1y = — H (Hg, —) n=N-1

AL = —H'(Hp, —r,) n=N

.

e Taking its variation with respect to the control ¢ leads (Leap-Frog,
no PML) to:

 Note: M is on RHS of gradient calculation!!

N
MV, J=2) _OJchbn . Vasc dx

Universidade
de Sao Paulo

Implementation of FWI [ILoF

Algorithm 1: Multiscale time-domain full waveform inversion.

Result: Optimized velocity model ¢(X) over a range of source
frequencies freq.

c? « initial velocity model;

k < 0;

for freq <+ freqmin to freqmna. do

Assign source frequency freq;

while VJ >0 & J > 0 ||k < (iterpmaee — 1) do

for iter< 0 to (iter,qr — 1) do

Compute all forward simulations for all n shots;

Calculate J,, at receivers;

Compute local gradient V.J,, via discrete adjoint;

Sum .J,, onto master;

Sum V.J,, onto master:

if rank is master then
Given V.J and J using L-BFGS produce Ac¥;
cFtl = Ack:

end if

Broadcast ¢**t! from master.
end for

end while

end for

13

Implementation of FWI TSH

Universidade
de Sao Paulo

* A new point evaluation function.
* Interpolating point data at arbitrary P-order quickly.

e Support for high-order spectral elements in tetrahedral
cells.

* Current tetrahedral Firedrake implementation only
uses equispaced elements and doesn't have
optmizations, such as sum-factorization, increasing

operations needed for matrix assembly and matrix-
free calculations.

Mesh Developmen US>

de Sao Paulo

e 2D/3D serial and distributed memory parallel triangular meshing
for a slab of Earth in Python using signed distance functions.

e https://github.com/krober10nd/SeismicMesh

SEG-Y file —> simulation ready mesh
e Python and C++ bound together using pybindi1.
 Modifications to DistMesh [2] algorithm.

 Computational Graphic Algorithms Library (CGAL) and
Boost are used for all “expensive” geometrical operations.

* Pre- and post processing (e.g., input file creation, mesh size
function class, boundary condition applier, etc.).

15

https://github.com/krober10nd/SeismicMesh

Mesh Development =2

* Minimum P wave speed , maximum source frequency, and spatial order
determine minimum resolution.

,a = f(p)

e Cr(h) < CFL, h

min

e N(X) =

f max * Ayl

<h<h

max?’

Vh<g

e 39,346 vertices and 77,649 elements

Mesh resolution

E 0=

@)
(- ~
O - 60 5
+ 2
3 40 3
. =
'g 4 20 é

0 S 10 15
X-direction (m)

16

Mesh Development 2>t

de Sao Paulo

import meshio

import numpy as np

import SeismicMesh

def example_2D():
Name of SEG-Y file containg velocity model.

fname = "velocity_models/vel_z6.25m_x12.5m_exact.segy’
bbox = (-12e3, 0, @, 67e3)

Construct mesh sizing object from velocity model
ef = SeismicMesh.MeshSizeFunction(

bbox=bbox,

model=fname,

domain_ext=1e3,

dt=0.001,

grade=0.15,

freg=5,

wl=5,

hmax=1e3,

hmin=50.09,

Build mesh size function
ef = ef.build()
ef.WriteVelocityModel("BP2084")

Visualize mesh size function

ef.plot()

Construct mesh generator
mshgen = SeismicMesh.MeshGenerator(
ef, method="cgal"

) # if you have cgal installed, you can use method="cgal"

Build the mesh (note the seed makes the result deterministic)

points, facets = mshgen.build(max_iter=50, nscreen=1, seed=0)

17

Experimental configuration TSH

g . . Universidade
e 1 km domain extension with ABC. de Sio Paulo

 Observed shot record generated with different
mesh
 Forward simulation kept in RAM

e 24 shots 50-m below the surface.
e 300 receivers 100-m below the surface

e Single-band 3/z source frequency.

o Simulation 7= 5,At = 0.005 seconds « No regularization.
A source

(a) V. exact @ receiver

S5km

Lkm;
b V., guess

Results UNSY,

de Sao Paulo

300 iterations, ~3 hours.
(a) 24 processors on AWS cluster

Vp, exact

UNYE

Universidade
de Sao Paulo

Next steps

Repeating using PML implementation and with the Gato do Mato velocity model.
Using a time-domain multiscale approach (i.e., progressively increasing source
frequency).

Using “observed” shot record created from another model (e.g. elastic “observed”
shot record) for acoustic FWI.

Checkpointing schemes!

20

References

[1] Florian Rathgeber, David A. Ham, Lawrence Mitchell, Michael Lange, Fabio Luporini, Andrew T. T. Mcrae,
Gheorghe-Teodor Bercea, Graham R. Markall, and Paul H. J. Kelly. Firedrake: automating the finite element
method by composing abstractions. ACM Trans. Math. Softw., 43(3):24:1-24:27, 2016. URL.: http://arxiv.org/

abs/1501.01809, arXiv:1501.01809, doi:10.1145/2998441.

[2] Per Olof Persson and Gilbert Strang. A Simple Mesh Generator in MATLAB. SIAM Review, 46:2004, 2004

21

http://arxiv.org/abs/1501.01809
http://arxiv.org/abs/1501.01809
https://arxiv.org/abs/1501.01809
https://doi.org/10.1145/2998441

Thanks for listening!

1N
‘ Research Centre —IJ

for Gas Innovation e e
\ Y 4 d . de Sao Paulo

