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Purpose
• Developing programs to solve inversion problems in seismologic domains using finite 

elements.

• Using Firedrake: a Domain Specific Language (DSL) written in Python to solve variational 

problems.


• Workstreams 3 and 4 have been collectively developing: 

• Spyro: Software for time domain FWI in Firedrake


1. Automated mesh generation workflows for seismology in 2D and 3D for isotropic 
triangular and tetrahedral elements. 


2. Continuous- and Discontinous Galerkin wave propagators (acoustic and elastic) 
with arbitrary P order in 2D and 3D.


3. SSPRK, Leapfrog, and Newmark time stepping schemes (support for up to 4th 
order accurate in time).  


4. Perfectly Matched Layer absorbing layers in 2D and 3D. 

5. Mesh-independent functional gradient for all discretizations using discrete adjoint 

method.
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Problem Statement
• Full-Waveform Inversion (FWI) derives high-resolution velocity models by minimizing the 

difference between observed and modeled seismic waveforms (all the waveforms=full). 


• Minimize the functional  subject to constraints imposed by the acoustic wave equation.


• Iteratively modify model parameter.

χ
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receiver
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p0(x, t)p(x, t)
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Governing equations
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Spatial Discretization
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Temporal discretization
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Second-order system of 
ordinary differential equations
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Discrete adjoint
• Theoretically simpler than continuous adjoint (transpose of system of equations).


Why we didn’t use automatic differentiation?


• Automatic differentiation w/ Dolfin-adjoint does not support  functionals defined at 
points (i.e., receivers). 


• Much of the available gradient-based optimization methods are mesh-dependent. 


• More flexibility in our implementation (e.g., support for both ensemble and spatial 
parallelism).



Discrete Adjoint – Mathematical 
Formulation

• Starting	point:	time-stepper	for	a	variable	 :	

	

• Matrices	 	are	spatial	discrete	matrices	

• 	and	 	are	initial	conditions	(homogeneous)	

• 	are	external	source	terms	

• If	PML	is	used,	 	contains	the	pressure	and	other	damping	functions
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Discrete Adjoint – Mathematical 
Formulation

• Under	the	above	constraints,	we	look	for	minimizing	some	error	
: 

	

• 	is	the	measure	operator,	 	are	the	shot	records	

• We	resort	to	the	Lagrangian	formalism:	
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Discrete	Adjoint	–	Mathematical	
Formulation

• Taking	its	variation	with	respect	to	the	direct	variables	 	leads	to:		

	

• Taking	its	variation	with	respect	to	the	control	 	leads	(Leap-Frog,	
no	PML)	to:	

• Note:	M	is	on	RHS	of	gradient	calculation!!	
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Implementation of FWI
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• A	new	point	evaluation	function.	
• Interpolating	point	data	at	arbitrary	P-order	quickly.	

• Support	for	high-order	spectral	elements	in	tetrahedral	
cells.	
• 	 Current	 tetrahedral	 Firedrake	 implementation	 only	
uses	 equispaced	 elements	 and	 doesn't	 have	
optmizations,	 such	 as	 sum-factorization,	 increasing	
operations	needed	 for	matrix	 assembly	and	matrix-
free	calculations.	

Implementation	of	FWI



Mesh Development
• 2D/3D serial and distributed memory parallel triangular meshing 

for a slab of Earth in Python using signed distance functions.


• https://github.com/krober10nd/SeismicMesh


SEG-Y file —> simulation ready mesh


• Python and C++ bound together using pybind11. 


• Modifications to DistMesh [2] algorithm.


• Computational Graphic Algorithms Library (CGAL) and 
Boost are used for all “expensive” geometrical operations.


• Pre- and post processing (e.g., input file creation, mesh size 
function class, boundary condition applier, etc.).
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Mesh Development
• Minimum P wave speed , maximum source frequency, and spatial order 

determine minimum resolution. 


• 


• , , 

h(X) =
vp

fmax * αwl
, α = f(p)

Cr(h) < CFL hmin ≤ h ≤ hmax ∇h ≤ g

• 39,346 vertices and 77,649 elements

16



Mesh Development
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Experimental configuration
• 24 shots 50-m below the surface.

• 300 receivers 100-m below the surface

• Single-band  source frequency. 

• Simulation  seconds

3hz
T = 5,Δt = 0.005
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• 1 km domain extension with ABC.

• Observed shot record generated with different 

mesh 

• Forward simulation kept in RAM

• No regularization. 



Results
300 iterations, ~3 hours. 
24 processors on AWS cluster 
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Next steps
• Repeating using PML implementation and with the Gato do Mato velocity model. 


• Using a time-domain multiscale approach (i.e., progressively increasing source 

frequency).


• Using “observed” shot record created from another model (e.g. elastic “observed” 

shot record)  for acoustic FWI.


• Checkpointing schemes!
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Thanks for listening!


