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Purpose
•  This work aims to create end-to-end workflows to build quality two- and 

three-dimensional (2D and 3D) unstructured triangular and tetrahedral 
meshes for seismic domains suitable for numerical wave propagators. 


• Workstream 4 has been developing: 

• SeismicMesh: Software for triangular mesh generation for seismology.


• Automatic (i.e., no manual geometry creation).

• No point clicking or drawing lines!


• Support for distributed memory parallelism in both 2D and 3D. 


https://github.com/krober10nd/SeismicMesh
-Open-source
-CI (89% code coverage)
-PEP compliance.
-Cmake build system
-Self-documentation (in progress)
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Software Architecture
• Python and C++ bound together using Pybind11. 


• Computational Graphic Algorithms Library (CGAL) and Boost are used for all 
low level geometrical operations.


• MPI4py, Numpy, Scipy, MeshIO. 


• Pre- and post processing utilities (e.g., input file creation, mesh size function 
class, boundary conditions, etc.).
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Software Architecture
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A python package MeshIO is 
 used for file i/o
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Mesh sizing functions
• User parameterizes the distribution of mesh resolution: 
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P-wave seismic velocity model

wavelength − to − gridscale(x) =
vp(x)

fmax * αwl



v(x)
fmax * αwl

Building the sizing func.



Mesh sizing  
functions
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• Sizing functions are defined on Cartesian grids

• Faster query than unstructured.

• No need to store connectivity of grid.

• Easy to parallelize.


• Stored as a Scipy.RegularGriddedInterpolant. 

rank2rank1rank0



Signed distance  
functions
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• Similar to the mesh sizing functions, signed distance functions can also be defined on 
structured grids and stored as gridded interpolants

d ≤ 0

d > 0

d = 0

• Signed distance function/Implicit domain definition:



Signed distance  
functions (SDFs)

• For some geometries, analytical signed distance function exists.

• Simple primitives such as cubes, conics, and spheres can be used.


Minimum distance to a rectangle:

Set operations with SDF: 



Mesh generation
• Modifications to DistMesh [2] algorithm. 

• Uses signed distance functions to define the domain.
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query SDF

query SDF
query sizing function



Mesh generation
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50-100 meshing iterations



Parallelism
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1. DistMesh requires a re-triangulation each meshing iteration.

2. Requires ~50-100 iterations to converge to a “high”-quality triangulation.


If we can parallelize Delaunay re-triangulation all other components of DistMesh are trivially 
parallel. 


Modified the methods proposed [4]:


Requires one communication step per meshing iteration to re-triangulate point set in parallel.

Simplicity comes from, in part, the domain decomposition topology and Delaunay property. 




Domain decomposition
• Load balancing has not yet been considered.



Performance
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• 3D parallel mesh generation

• Load balancing has not yet been considered.

• 50 meshing iterations

N ≈ 37,000,000 cells

x serial



Robustness
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sliver element

• All Delaunay-based methods suffer from degenerate flat elements called slivers
• Implemented a method to remove the slivers in parallel following [3]. 

• Sizing distribution is preserved since only slivers are incrementally moved.

vertex perturbation



Sliver removal
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Ongoing applications
• Meshes are used in numerical wave propagators (acoustic and elastic).
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αwl = 10, P = 1

αwl = 3, P = 3 time = 279.62s

time = 213.94s

acoustic, dt = 0.001s, T = 5s, fmax = 10Hz,4procs , Intel, IPDG, explicit Newmark, w/PML

N = 61,987 vertices

N = 5,818 vertices

difference from uniform mesh 

difference from uniform mesh 



Ongoing applications
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• Used in the training and validation of neural networks.


• Several thousand meshes are generated from synthetic velocity models. 

• The pair of synthetic velocity models, meshes, and seismograms are used to validate 

predictions of velocity models made by neural networks.

• Meshing workflows ensure consistent results.

Synthetic velocity model dataset

Mesh generator

Wave propagators in Firedrake

Train and validate  
neural networks with shot/velocity  

model pair



Ongoing applications
• Performing “grid sequencing” or “continuation” in the time-domain for FWI.

• During FWI after each frequency band is complete, mesh is re-generated to a new source 

frequency given the previous model updates.
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Thanks for listening!
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Software Architecture

implicit function
P-wave velocity 
model

sizing map
generator simulation ready    

mesh  + input files

MeshSizeFunction MeshGenerator
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input output


