
Triangular meshing for
seismology

Keith Roberts, Rafael Gioria,

other Workstream 4 members

STMI Project

1. Purpose

2. Software architecture

3. Mesh sizing function

4. Mesh generation algorithm

5. Applications

Outline

2

Purpose
• This work aims to create end-to-end workflows to build quality two- and

three-dimensional (2D and 3D) unstructured triangular and tetrahedral
meshes for seismic domains suitable for numerical wave propagators.

• Workstream 4 has been developing:

• SeismicMesh: Software for triangular mesh generation for seismology.

• Automatic (i.e., no manual geometry creation).

• No point clicking or drawing lines!

• Support for distributed memory parallelism in both 2D and 3D.

https://github.com/krober10nd/SeismicMesh
-Open-source
-CI (89% code coverage)
-PEP compliance.
-Cmake build system
-Self-documentation (in progress)

3

Software Architecture
• Python and C++ bound together using Pybind11.

• Computational Graphic Algorithms Library (CGAL) and Boost are used for all
low level geometrical operations.

• MPI4py, Numpy, Scipy, MeshIO.

• Pre- and post processing utilities (e.g., input file creation, mesh size function
class, boundary conditions, etc.).

4

Software Architecture

5

A python package MeshIO is
 used for file i/o

input
input

input
input

input
input

input
input

input

output

Mesh sizing functions
• User parameterizes the distribution of mesh resolution:

6

P-wave seismic velocity model

wavelength − to − gridscale(x) =
vp(x)

fmax * αwl

v(x)
fmax * αwl

Building the sizing func.

Mesh sizing
functions

8

• Sizing functions are defined on Cartesian grids

• Faster query than unstructured.

• No need to store connectivity of grid.

• Easy to parallelize.

• Stored as a Scipy.RegularGriddedInterpolant.

rank2rank1rank0

Signed distance
functions

9

• Similar to the mesh sizing functions, signed distance functions can also be defined on
structured grids and stored as gridded interpolants

d ≤ 0

d > 0

d = 0

• Signed distance function/Implicit domain definition:

Signed distance
functions (SDFs)

• For some geometries, analytical signed distance function exists.

• Simple primitives such as cubes, conics, and spheres can be used.

Minimum distance to a rectangle:

Set operations with SDF:

Mesh generation
• Modifications to DistMesh [2] algorithm.

• Uses signed distance functions to define the domain.

11

query SDF

query SDF
query sizing function

Mesh generation

12

50-100 meshing iterations

Parallelism

13

1. DistMesh requires a re-triangulation each meshing iteration.

2. Requires ~50-100 iterations to converge to a “high”-quality triangulation.

If we can parallelize Delaunay re-triangulation all other components of DistMesh are trivially
parallel.

Modified the methods proposed [4]:

Requires one communication step per meshing iteration to re-triangulate point set in parallel.

Simplicity comes from, in part, the domain decomposition topology and Delaunay property.

Domain decomposition
• Load balancing has not yet been considered.

Performance

15

• 3D parallel mesh generation

• Load balancing has not yet been considered.

• 50 meshing iterations

N ≈ 37,000,000 cells

x serial

Robustness

16

sliver element

• All Delaunay-based methods suffer from degenerate flat elements called slivers
• Implemented a method to remove the slivers in parallel following [3].

• Sizing distribution is preserved since only slivers are incrementally moved.

vertex perturbation

Sliver removal

17

Ongoing applications
• Meshes are used in numerical wave propagators (acoustic and elastic).

18

αwl = 10, P = 1

αwl = 3, P = 3 time = 279.62s

time = 213.94s

acoustic, dt = 0.001s, T = 5s, fmax = 10Hz,4procs , Intel, IPDG, explicit Newmark, w/PML

N = 61,987 vertices

N = 5,818 vertices

difference from uniform mesh

difference from uniform mesh

Ongoing applications

19

• Used in the training and validation of neural networks.

• Several thousand meshes are generated from synthetic velocity models.

• The pair of synthetic velocity models, meshes, and seismograms are used to validate

predictions of velocity models made by neural networks.

• Meshing workflows ensure consistent results.

Synthetic velocity model dataset

Mesh generator

Wave propagators in Firedrake

Train and validate
neural networks with shot/velocity

model pair

Ongoing applications
• Performing “grid sequencing” or “continuation” in the time-domain for FWI.

• During FWI after each frequency band is complete, mesh is re-generated to a new source

frequency given the previous model updates.

20

Thanks for listening!

21

References
[1] Florian Rathgeber, David A. Ham, Lawrence Mitchell, Michael Lange, Fabio Luporini, Andrew T. T. Mcrae,
Gheorghe-Teodor Bercea, Graham R. Markall, and Paul H. J. Kelly. Firedrake: automating the finite element
method by composing abstractions. ACM Trans. Math. Softw., 43(3):24:1–24:27, 2016. URL: http://arxiv.org/
abs/1501.01809, arXiv:1501.01809, doi:10.1145/2998441.

[2] Per Olof Persson and Gilbert Strang. A Simple Mesh Generator in MATLAB. SIAM Review, 46:2004, 2004

[3] Tournois, Jane, Rahul Srinivasan, and Pierre Alliez. "Perturbing slivers in 3D Delaunay
meshes." Proceedings of the 18th international meshing roundtable. Springer, Berlin, Heidelberg, 2009.
157-173.

[4] Peterka, Tom, Dmitriy Morozov, and Carolyn Phillips. "High-performance computation of distributed-
memory parallel 3D Voronoi and Delaunay tessellation." SC'14: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis. IEEE, 2014.

[5] Persson, P. Mesh size functions for implicit geometries and PDE-based gradient limiting. Engineering with
Computers 22, 95–109 (2006). https://doi.org/10.1007/s00366-006-0014-1

22

http://arxiv.org/abs/1501.01809
http://arxiv.org/abs/1501.01809
https://arxiv.org/abs/1501.01809
https://doi.org/10.1145/2998441

Software Architecture

implicit function
P-wave velocity
model

sizing map
generator simulation ready

mesh + input files

MeshSizeFunction MeshGenerator

23

input output

